
Malibu Library User's Manual

Malibu Library User's
Manual

The Malibu Library User's Manual was prepared by the technical staff
of Innovative Integration on December 10, 2013.
For further assistance contact:

Innovative Integration
2390-A Ward Ave
Simi Valley, California 93065

PH: (805) 578-4260
FAX: (805) 578-4225

email: techsprt@innovative-dsp.com
Website: www.innovative-dsp.com

This document is copyright 2013 by Innovative Integration. All rights
are reserved.
$/Distributions/Components/Malibu/Documentation/OO_Manual/Mali
bu.pdf
Rev 1.4

mailto:techsprt@innovative-dsp.com

Table of Contents
Chapter 1. Introduction..10

Real Time Solutions!...10
Vocabulary...10

What is Malibu? ..10
What is Microsoft MSVC?...11
What is Qt?...11
What is C++ Builder?...11
What kinds of applications are possible with Innovative Integration hardware?...11
Why do I need to use Malibu with my Baseboard?..12
Finding detailed information on Malibu...12

Online Help..12
Innovative Integration Technical Support..12
Innovative Integration Web Site..13

Typographic Conventions..13

Chapter 2. A Tour of Malibu...14
Malibu Architecture...14

High Performance Code...14
Synergistic operation with DSP co-processor boards..14
A Portable Class Library..15

Class Groups In Malibu...15
Operating System Independence...16
Malibu Namespaces...17
Interface Classes in Malibu..18
Event Callbacks in Malibu...19

UI Thread Synchronization..20
Using the Malibu Library..20

Creating a Streaming Application in Visual C++..21
Creating the Malibu Objects...21
Initializing Object Properties and Events...22
Event Handler Code...23
Loading COFF Files...25
Loading Logic Files..25
Script Files..26

Chapter 3. Creating Applications using an IDE..27
Creating a Malibu Project in Microsoft Visual Studio 7...27
Enabling Auto-Saving of Projects...27
Creating a Malibu Project..28
Other Configuration Requirements..29
Creating a Malibu Project in Microsoft Visual Studio Vc8/Vc9...30
Enabling Auto-Saving of Projects...31
Creating a Malibu Project..31
Other Configuration Requirements..33
Creating a Malibu Application using Nokia QtCreator...34
Install and/or Rebuild Qt Library...34
Creating a Malibu Project in Borland Developer's Studio/Turbo C++..38
Enabling Auto-Saving of Projects...38

Malibu Library User's Manual 3

Default Project Options which should be Changed...39
Creating Projects in Borland C++ Builder 6.0...41
Enabling Auto-Saving of Projects...41
Creating a Malibu Project..41

Chapter 4. The Malibu Framework Library...46
Framework Support Classes...46

Thunking..46

Chapter 5. The Malibu OS Library..47
Thread Support Classes..47

Threads...47
Signals..47
Resource Control..48
Inter-Thread Communications ..48
Operating-System ..48

Chapter 6. The Malibu Utility Library...49
Buffer Classes..49

Message Packet Classes...49
Disk I/O Classes...49
Data Recording and Playback Classes...50
System Components...50
File Support Methods...51
String Support ...51
Matlab Interface Classes..51
Data Set Classes...52

Chapter 7. The Malibu Hardware Library..53
Target I/O Streaming Classes..53
Interface Classes..54
Timebase Classes...54
Hardware Support Classes...54
Hardware Register Classes..55

Chapter 8. The Malibu Analysis Library...56
Statistical Analysis Classes..56
Signal Processing Classes..56
Signal Generation Classes...57

Chapter 9. The Malibu PCI Library...59
PCI Baseboard Classes..59

Baseboards and PMC Modules..59
PMC Module Classes...60
XMC Module Classes..60

Chapter 10. The Malibu Ethernet Library...62
Baseboard Classes..62

Chapter 11. Packet Polling Library..63
PacketPollMgr Class..63

Malibu Library User's Manual 4

Con/Destructor...63
Events...63
Interfaces..63

Start()/Stop()...63
Send()/Recv()...64
SetFifoDacDelay()..64

PacketPollDataThread Class..64
PacketPollDataEvent Class..64
PacketPollQueue Class..65

Chapter 12. Writing Custom Applications...66
The Snap Example...66

Tools Required...66
Program Design..67

The Host Application ..67
User Interface...67

Configure Tab...67
Setup Tab..68
Stream Tab..70

Host Side Program Organization...71
ApplicationIo..72

Initialization..72
Starting Data flow...76
Handle Data Available...79

The Wave Example..80
User Interface...80

The Setup Tab...80
The Waveform Tab...81
Stream Tab..82

ApplicationIo..82
Stream Preconfigure...82
Start Streaming...83
Data Required Event Handler...86
FillWaveformBuffer()..87

Chapter 13. Malibu Buffer Classes...90
Buffer Design Decisions..90

Design Decision #1 – A “Typeless” Buffer class..90
Design Decision #2 – Data Access Datagrams..90
Design Decision #3 – Predefined Access Datagram Classes...91
Design Decision #4 – IPP Datagram Classes...91

Buffer Internals..92
Data Buffers : The Innovative::Buffer Class...92

Buffer Class (Buffer_Mb.h)...93
Holding Template (Buffer_Mb.h)..93
MessageDatagram (Buffer_Mb.h)..93

Buffer Data Access..93
Access Template Features..94

Template AccessDatagram<T> (AccessDatagrams_Mb.h)...94
Template Class DatagramIterator (AccessDatagrams_Mb.h)..95
Interface Class IDatagrammable (AccessDatagrams_Mb.h)...97

Malibu Library User's Manual 5

Interface Class IIteratable (AccessDatagrams_Mb.h)..97
Standard Implementation Classes..97

IntegerDG (BufferDatagrams_Mb.h)...97
UIntegerDG (BufferDatagrams_Mb.h)..97
FloatDG (BufferDatagrams_Mb.h)..98
ShortDG (BufferDatagrams_Mb.h)..98
ComplexDG (BufferDatagrams_Mb.h)..98
CharDG (BufferDatagrams_Mb.h)...98

IPP Implementation Classes...98
IppCharDG (IppCharDG_Mb.h)..98
IppComplexDG (IppComplexDG_Mb.h)..98
IppFloatDG (IppFloatDG_Mb.h)...98
IppIntegerDG (IppIntegerDG_Mb.h)...99
IppShortDG (IppShortDG_Mb.h)..99

Special Purpose Datagrams..99
PacketBufferHeader (BufferHeader_Mb.h)...99
IDatagram Template (Datagram_Mb.h)...99
MessageDatagram (Buffer_Mb.h)..99
Internal Datagrams (various CPPs)..99

Guidelines for Converting to new Buffers...100
Translate all buffers to be Innovative::Buffer..100
Convert array operators on buffers...100
Size Issues..100
Datagrams and Iterators are Disposable...101
Packet Stream Header Access..101
Porting Buffer Access Modes #1 – The Aztec Model..101
Porting Buffer Access Modes #2 – Buffer [] operator...102
Porting Buffer Access Modes #3 -- Applying a Structure to Buffer Content..104

Chapter 14. Using the X6 Family Baseboards in Malibu..105
Overview..105
Buffers and their Type...105

Buffer Conversions..106
Applying a Type...106

Buffer Sizing Template Functions...107
Holding<T>() :: Sizing a buffer to hold N elements..107
CouldHold<T>() :: Elements in a current buffer..107

Buffer Header Datagrams..107
Buffer Trailer Datagrams...108
Buffer Header/Trailer Utility Functions...108

Clear Functions...108
Header Correctness Functions..108
Trailer Correctness Functions...109
Header Size Conversion...109

New Streaming Object – VitaPacketStream..109
Connection..109
Native Buffer Methods...109
Send and Recv Methods...110
Stream Data Notification Events..110
Direct Data Mode...110

Working with Vita Packet Streams..110

Malibu Library User's Manual 6

VitaPacketParser – Parsing Input Packets..110
VitaPacketPacker – Filling Output Packets...112

Chapter 15. Vita Packet Format..114
Overview..114
X6 Velocia Packets..114

Packet Header Format..114
Packet Data Format..115

X6 Vita Packets...115
Packet Header Format..116

VITA Header IF word..116
VITA Header SID word...117
VITA Header Class OUI Word..117
Vita Header Class Info Word...117
Vita Header Timestamp – Integer Seconds Word..117
Vita Header Timestamp – Fractional Seconds High and Low Words...117

Vita Packet Trailer Format...118
VITA Trailer Word...118
State and Event Bits and Enable Bits...118
Bits 20-23...118
Context Packet Count...118
Padding...118

Chapter 16. Creating a Custom FMC Module...120
FMC Modules and Malibu...120
The IFmcDaughterCard Interface Class..120

BoardStatus()..121
InitCardPower() and RemoveCardPower()..122
ConstructCustomParts()...122
OpenHardware()...122
PreconfigureHardware()...122
ConfigureHardware()...123
StreamStopHardware()...123
CloseHardware()..123
Memory Spaces and Registers...123
The FICL Interface...124

Chapter 17. Interfacing to Software Applications via a DLL...126
Overview..126
Development Approach...126
Example Source...126

Chapter 18. Using the embedded FICL interpreter..128
Ficl Features...128
A Beginners Guide...129

Using Ficl...129

Malibu Library User's Manual 7

List of Tables
Table 1. Path Spec Options..29
Table 2. Path Spec Options..32
Table 3. Path Spec Options..44
Table 4. Development Tools for the Windows Snap Example..66
Table 5. Basic Buffer Datagram Classes...91
Table 6. IPP Function Datagrams..91
Table 7. PacketBufferHeader Field Methods..99
Table 8. X6 Velocia (Velo) Packet Header...114
Table 9. Velocia Header Word..114
Table 10. Vita Packet Format..115
Table 11. Timestamp Integer Seconds Options ..116
Table 12. Timestamp Fractional Seconds Options ...117
Table 13. Padding Example ..119
Table 14. Maximum Padding for X6 Boards...119

Malibu Library User's Manual 8

List of Figures

Malibu Library User's Manual 9

Chapter 1. Introduction

Real Time Solutions!

Thank you for choosing Innovative Integration, we appreciate your business! Since 1988, Innovative Integration has grown
to become one of the world's leading suppliers of DSP and data acquisition solutions. Innovative offers a product portfolio
unrivaled in its depth and its range of performance and I/O capabilities .

Whether you are seeking a simple DSP development platform or a complex, multiprocessor, multichannel data acquisition
system, Innovative Integration has the solution. To enhance your productivity, our hardware products are supported by
comprehensive software libraries and device drivers providing optimal performance and maximum portability.

Innovative Integration's products employ the latest digital signal processor technology thereby providing you the competitive
edge so critical in today's global markets. Using our powerful data acquisition and DSP products allows you to incorporate
leading-edge technology into your system without the risk normally associated with advanced product development. Your
efforts are channeled into the area you know best ... your application.

Vocabulary

What is Malibu?
Malibu is the Innovative Integration-authored component suite, which combines with the Microsoft or Embarcadero
(Windows) and GNU C++ compilers (Windows/Linux) and the MS Visual Studio and QtCreator IDEs to support
programming of Innovative hardware products under Windows and Linux. Malibu supports both high-speed data streaming
plus asynchronous mailbox communications between the DSP and the Host PC, plus a wealth of host functions to visualize
and post-process data interchanged with the target DSP.

See the Malibu User's Guide for detailed information on this comprehensive library.

Malibu Library User's Manual 10

http://www.innovative-dsp.com/cgi-bin/dlDocs.cgi?product=Malibu

What is Microsoft MSVC?
MSVC is a general-purpose code-authoring environment suitable for development of Windows applications of any type.
Malibu extends the MSVC IDE through the addition of dynamically-created MSVC-compatible C++ classes specifically
tailored to perform real-time data streaming functions.

What is Qt?
Qt (pronounced officially as "cute (KYOOT)" although commonly referred to as "Q.T. (KYOO-TEE)") is a cross-platform
application development framework widely used for the development of GUI programs (in which case it is known as a
widget toolkit), and also used for developing non-GUI programs such as console tools and servers. Qt is most notably used in
Google Earth, KDE, Opera (before 10.60 version), OPIE, Skype, VLC media player and VirtualBox. It is owned and
supported by Digia Qt, which came into being after the acquisition of Qt from (which followed Nokia's acquisition of the
Norwegian company Trolltech, the original producer of Qt, on June 17, 2008).

Qt uses standard C++ but makes extensive use of a special pre-processor (called the Meta Object Compiler, or moc) to enrich
the language. Qt can also be used in several other programming languages via language bindings. It runs on all major
platforms and has extensive internationalization support. Non-GUI features include SQL database access, XML parsing,
thread management, network support, and a unified cross-platform API for file handling.

Distributed under the terms of the GNU Lesser General Public License (among others), Qt is free and open source software.
All editions support a wide range of compilers, including the GCC C++ compiler and the Visual Studio suite..

So what is special about Qt compared with other cross-platform GUI toolkits? Qt gives you a single, easy-to-use API for
writing GUI applications on multiple platforms that still utilize the native platform's controls and utilities. Link with the
appropriate library for your platform (Windows/Unix/Mac) and compiler (GNU C++), and your application will adopt the
look and feel appropriate to that platform. On top of great GUI functionality, Qt gives you: online help, network
programming, streams, clipboard and drag and drop, multi-threading, image loading and saving in a variety of popular
formats, database support, HTML viewing and printing, and much more.

What is C++ Builder?
C++ Builder is a general-purpose code-authoring environment suitable for development of Windows applications of any type.
Malibu extends the Builder IDE through the addition of a large, powerful family of C++ objects specifically tailored to
perform real-time data streaming functions.

What kinds of applications are possible with Innovative Integration hardware?
Data acquisition, data logging, stimulus-response and signal processing jobs are easily solved with Innovative Integration
baseboards using the Malibu libraries and software. There are a wide selection of peripheral devices available in the XMC,
SBC and DSP product families, for all types of signals from DC to RF frequency applications, video or audio processing.
Additionally, multiple Innovative Integration baseboards can be used for a large channel or mixed requirement systems and
data acquisition cards from Innovative can be integrated with Innovative's other DSP or data acquisition baseboards for high-
performance signal processing.

Malibu Library User's Manual 11

Why do I need to use Malibu with my Baseboard?
One of the biggest issues in using a personal or embedded computer for data collection, control, and communications
applications is the relatively poor real-time performance associated with the system. Despite the high computational power of
the PC, it cannot reliably respond to real-time events at rates much faster than a few kilohertz. The PC is really best at
processing data, not collecting it. In fact, most modern operating systems like Windows and standard distributions of Linux
are simply not focused on real-time performance, but rather on ease of use and convenience. Word processing and
spreadsheets are simply not high-performance real-time tasks.

The solution to this problem is to provide specialized hardware assistance responsible solely for real-time tasks. Much the
same as a dedicated video subsystem is required for adequate display performance, dedicated hardware for real-time data
collection and signal processing is needed. This is precisely the focus of our baseboards – a high performance, state-of-the-
art, dedicated digital signal processor coupled with real-time data I/O capable of flowing data via a PCI Express bus
interface.

The hardware is really only half the story. The other half is the Malibu software tool set which uses state-of-the-art software
techniques to bring our baseboards to life in the Windows/Linux environments. These software tools allow you to create
applications for your baseboard that encompass the whole job - from high speed data acquisition, to the user interface.

Finding detailed information on Malibu
Information on Malibu is available in a variety of forms:

• Data Sheet (http://www.innovative-dsp.com/products/malibu.htm)

• On-line Help

• Innovative Integration Technical Support

• Innovative Integration Web Site (www.innovative-dsp.com)

Online Help

Help for Malibu is provided in a single file, Malibu.chm which is installed in the Innovative\Documentation folder during the
default installation. It provides detailed information about the components contained in Malibu - their Properties, Methods,
Events, and usage examples. An equivalent version of this help file in HTML help format is also available online at
http://www.innovative-dsp.com/support/onlinehelp/Malibu.

Innovative Integration Technical Support

Innovative includes a variety of technical support facilities as part of the Malibu toolset. Telephone hotline supported is
available via

Hotline (805) 578-4260 8:00AM-5:00 PM PST.

Alternately, you may e-mail your technical questions at any time to:

techsprt@innovative-dsp.com.

Malibu Library User's Manual 12

http://www.innovative-dsp.com/support/onlinehelp/Malibu
http://www.innovative-dsp.com/
http://www.innovative-dsp.com/cgi-bin/dlDocs.cgi?product=Malibu

Also, feel free to register and browse our product forums at http://forum.iidsp.com/, which are an excellent source of FAQs
and information submitted by Innovative employees and customers. In addition to the forum, please take a few moments are
register on the MyII web portal, which will provide access to the latest version of the software libraries, manuals, data sheets
and more. The forum and the MyII portal are independent support resources, so it is important to establish an account at both
sites.

Innovative Integration Web Site

Additional information on Innovative Integration hardware and the Malibu Toolset is available via the Innovative Integration
website at www.innovative-dsp.com

Typographic Conventions

This manual uses the typefaces described below to indicate special text.

Typeface Meaning

Source Listing Text in this style represents text as it appears onscreen or in code. It
also represents anything you must type.

Boldface Text in this style is used to strongly emphasize certain words.

Emphasis Text in this style is used to emphasize certain words, such as new
terms.

Cpp Variable Text in this style represents C++ variables

Cpp Symbol
Text in this style represents C++ identifiers, such as class, function,
or type names.

KEYCAPS Text in this style indicates a key on your keyboard. For example,
“Press ESC to exit a menu”.

Menu Command
Text in this style represents menu commands. For example “Click
View | Tools | Customize”

Malibu Library User's Manual 13

mailto:techsprt@innovative-dsp.com
http://www.innovative-dsp.com/myii/myAccount.php
http://forum.iidsp.com/

Chapter 2. A Tour of Malibu

Malibu is a powerful, feature-rich software library designed to meet the challenge of developing software capable of high-
speed data flow and real-time signal analysis on PC-compatible platforms. Malibu adds high performance data acquisition
and data processing capabilities to Microsoft Visual C++ .NET 2003/2005/2008/2010, Borland/CodeGear/Embarcadero
Developers Studio/Turbo C++/BCB6 or GNC C++ applications with a complete set of functions that solve data movement,
analysis, viewing, logging and fully take advantage of the object-oriented nature of C++.

Harnessing the expressive power of the standard C++ environments listed above, Malibu offers the most powerful and
flexible tools to rapidly integrate high-end data processing in applications. This class library offers an excellent means to
application engineers for synchronizing host side data movement and processing with hardware-driven data that is transferred
to/from DSP or data acquisition cards. Malibu simply delivers the highest performance data streaming achievable on a
desktop or industrial PC.

Rapid application development is achieved using principles such as reusable C++ classes, visual application and form design
and full-bandwidth direct hardware access. Malibu is an environment that allows you to create any real-time applications
running under Windows or Linux.

Malibu Architecture

High Performance Code

A critically-important feature of Malibu is that it was written from the ground up with demanding real-time applications as
the focus of the product. Malibu features a C++ foundation that has powerful data acquisition and analysis features added to
it. So when you work with Malibu, you are building on C++ - a language that is unrivaled for its power, ease of development
and flexibility. You can code with the tool that suits you, within your preferred visual development environment, supporting
rapid prototyping and attractive user interface creation with minimal code.

Synergistic operation with DSP co-processor boards

Innovative baseboards which are equipped with an on-board Texas Instruments DSP, such as products within the Matador or
Velocia family, are provided with an additional library named Pismo which facilitates real-time data acquisition and analysis
through embedded DSP programs running on the DSP. Pismo (for target DSP development) coupled with Malibu (for Host
development) gives you the power to collect real-time data, analyze it, process it, record it and display it - all within a
flexible, yet feature rich tool set. Pismo supports several data capture/playback modes including continuous streaming,
transient capture and stimulus/response that allow you to construct your experiment to suit the situation. Complete control
over the triggering and data collection/ playback process makes it easier to capture the data you need, all from within one
single host application.

When developing an embedded DSP application, Pismo is a tremendous complement of tools for the host side that will
greatly facilitate your development. Malibu will help you capture data that has been transferred over the PCI bus by your

Malibu Library User's Manual 14

DSP, and manipulate it, view it and log it. You can even “pass it” through to your own processing code segment, all with
ease. Pismo simply equates to an incredible amount of time saved.

An important element within the Malibu library is support for data transfer between the host software and a target baseboard
at the highest speed the hardware will support. Obtaining high performance on a PC is a challenging job. Malibu does all of
that internally via it's streaming support classes.

A Portable Class Library

One of the design concepts for Malibu was to allow its library to be used on the most popular IDE frameworks on PCs:
Microsoft Visual Studio, Embarcadero Builder C++ products and GNU C++. Malibu is written in standard C++, using
standard C++ constructs and libraries. The same source code set is compiled into libraries for each supported compiler,
meaning that on any platform the same objects with the same methods and interfaces are supported.

In order to provide the main services of the Malibu library, a number of building-block classes and methods were developed.
Many of these classes have uses in the user application as well as in the library, since they provide a portable and tested class
or function to perform the sorts of operations that are common in applications.

Class Groups In Malibu

The classes in the Malibu suite fall into several functional categories. These are implemented within different library files
within Malibu to provide maximum autonomy and keep the organization of the library clear. These categories are outlined in
the table and the following paragraphs.

Category Purpose

Framework Access to framework-system specific features such as those within the Win32, Win64 or Qt
API to accomplish inter-thread messaging and command-line access. Implemented within
the Framework_Mb library. This is the only library containing platform-specific code.

OS Access to operating-system specific features, such as threads, signals resource locks.
Implemented within the Os_Mb library. Note: All OS-specific code is isolated into classes
within the OSAL layer, described below.

Analysis Provide access to the common signal processing functions such as filters and FFTs; Logging
and playback of waveforms and other classes needed in data acquisition and control
applications. Implemented within the Analysis_Mb library.

Utility Wide variety of common helper classes to manipulate elementary objects such strings and
buffers; perform file I/O; accurate timing measurements and delays; implement inter-thread
callbacks. Includes a C++ implementation of OpenWire inter-class callback events to allow
convenient data processing of a data stream. Implemented within the Utility_Mb library.

Malibu Library User's Manual 15

Category Purpose

Hardware Provide software interface to generic hardware devices used on Innovative baseboards.
Provision for COFF file parsing and downloads, HPI DSP bus access, message I/O
structures, XSVF parsing and loading, FPGA loading via SelectMap, access to baseboard
calibration ROM and debug scripts. Implemented within the Hardware_Mb library.

PCI Provide software interface to PCI- and PCI Express -equipped DSP baseboards and PMC
modules. Provisions for peripheral initialization and bus-mastering data transfers between
target DSP and/or FPGA peripherals and Host PC. Implemented within the Pci_Mb library.

VPX Provide software interface to VPX -equipped baseboards and FMC modules. Provisions for
peripheral initialization and bus-mastering data transfers between target DSP and/or FPGA
peripherals and Host PC. Implemented within the Vpx_Mb library.

Ethernet/Poco Provide software interface to ethernet-equipped targets, such as Andale and single-board
products such as the SBC-K7. Provision for peripheral initialization and TCP/IP
communications between target DSP and Host PC. Implemented within the Ethernet_Mb
and Poco_Mb projects.

Application Classes which simplify creation of example code, such as static waveform generator, INI file
writer, etc.

Each library has its contents summarized in a later chapter in this document. In addition, Malibu has an online help file that
provides further information on the classes in the library and their use.

Operating System Independence

Malibu currently runs under nearly all versions of Windows 32 and 64 bit, most Linux 32 and 64-bit variants including those
using the Xenomai and Red Hat MRG RTOS extensions. Malibu has been ported to Wind River VxWorks 6.8, but that port
is no longer actively supported. Contact Innovative if you require current VxWorks support.

Malibu has been designed for portability and migrating to a new operating system is straightforward. All OS dependencies in
Malibu are isolated into the OS abstraction layer (OSAL). OSAL is a pure, abstract C++ interface. To port Malibu to a new
OS, one need only implement a concrete version of the OSAL interface, then link accordingly.

The OSAL interface consists of six classes which provide access to primitive OS objects such as mutexes, events, threads,
debug tracing and hardware enumeration, mapping and interrupt hooking. The complete interface specification is listed in the
header Osal_Mb.h, located in the Innovative/Malibu folder after software installation.

To port Malibu to a new OS, implement concrete versions of each of the classes in namespace OsalSupport. For instance,
your mutex class should derive from IOsMutex and must implement a Lock and Unlock method.

Malibu Library User's Manual 16

http://www.innovative-dsp.com/forum/viewtopic.php?f=18&t=1579&p=4962&hilit=OSAL#p4962

Once all methods for all five classes have been implemented and tested, the standard example code provided with each board
which uses Malibu will work without change. Simply subsume the entire ApplicationIo object into your application code, and
call it's public methods similar to the supplied example to control the card.

Malibu Namespaces

Malibu uses C++ name spaces to distinguish its classes and methods from those of other libraries. The majority of the classes
within Malibu reside within the Innovative name space. Another common name space is OpenWire for classes that
make up the OpenWire data transfer and connection library in Malibu. There are other name spaces in Malibu that are used
internally and not usually involved at the application level.

Like any C++ library, to use Malibu objects you must include the appropriate header that defines the structure of the object
and its methods. If this object is in a namespace, the class name has to include the namespace to provide the full name of the
class. For instance:

#include <Quadia.h>
...
MyClass::DoWork()
{
 Innovative::Quadia Dsp;
 Dsp.Target(0);
 Dsp.Open().
 ...
}

Since Quadia is in the Innovative namespace, its fully qualified name is Innovative::Quadia. To avoid having to
include the namespace, a using directive can be used to tell the compiler to search the Innovative namespace
automatically:

#include <Quadia.h>
using namespace Innovative;
...
MyClass::DoWork()
{
 Quadia Dsp;
 Dsp.Target(0);
 Dsp.Open().
 ...
}

These directives should be used with caution, since names shared in two namespaces may create errors in compilation. Also,
be aware that it is poor form to employ the using namespace directive within a header file.

Refer to the Malibu.chm on-line help file for detailed descriptions of any of the classes or components in the Malibu library
suite.

Malibu Library User's Manual 17

Interface Classes in Malibu

An interface is a software technique that helps organize the methods of a class into functional groups. Malibu uses interface
classes extensively to help manage the complexity of our objects.

What does this mean? Consider these two classes controlling radios:

class OldStyleRadio
{

 enum KnobDirection { knobLeft, knobRight };
 void PlugIn();
 void Unplug();
 int TurnStationKnob(KnobDirection turn);
 float TunedFrequecy();
};

class NewRadio
{
 void PowerButton(bool state);
 void SetBand(BandType band);
 int StationUpButton();
 int StationDownButton();
 float TunedFrequecy();
 int PressPreset(int which);
};

Now an application can't easily use both sorts of radio, because the methods differ. Each radio supports similar actions, but in
unique ways. Also, it isn't apparent which methods belong with what 'action set' in the radio. So lets define the actions our
common radio must perform:

class IRadioPower
{
 virtual void Power(bool state) = 0;
};

class IRadioTuning
{
 virtual void TuneUp() = 0;
 virtual void TuneDown() = 0;
 virtual float TunedFrequency() = 0;
};

These interface classes define a set of methods that we need to have in order to support an operation. Note that this interface
says nothing at all about how an object will actually get the job done; just what method we can call to do a defined task. If
our application is written to use the IRadioPower and IRadioTuning interface classes, it will be able to operate any radio
that supports the two interfaces.

So here we change the radios to implement the interfaces:

class OldStyleRadio : public IRadioPower, public IRadioTuning
{
 enum KnobDirection { knobLeft, knobRight };
 // IRadioPower implementation
 virtual void Power(bool state)
 {
 if (state)
 PlugIn();
 else
 Unplug();

Malibu Library User's Manual 18

 }
 // IRadioPower implementation
 virtual void TuneUp()
 {
 TurnStationKnob(knobRight);
 }
 virtual void TuneDown()
 {
 TurnStationKnob(knobLeft);
 }
 float TunedFrequecy();

 // basic functions
 void PlugIn();
 void Unplug();
 int PressPreset(int which);
 int TurnStationKnob(KnobDirection turn);
};

class NewRadio : public IRadioPower, public IRadioTuning
{
 // IRadioPower implementation
 virtual void Power(bool state)
 {
 PowerButton(state);
 }
 // IRadioPower implementation
 virtual void TuneUp()
 {
 StationUpButton();
 }
 virtual void TuneDown()
 {
 StationDownButton();
 }
 float TunedFrequecy();

 // basic functions
 void PowerButton(bool state);
 void SetBand(BandType band);
 int StationUpButton();
 int StationDownButton();
};

Not only can an application now control both the radios, but the interface classes themselves provide a definition of a
subsystem of a device that can aid in reducing the complexity of a complex system. In the above example, the dozen or so
methods are reduced to two subsystems – power management and station channel management.

In the baseboard objects that control Innovative's co-processor boards, there are many of these subsystems defined to manage
logic loading, loading of code to a target device, and board I/O. As each of these systems is more complicated than this
simple example, the value of defining interfaces increases all the more.

Event Callbacks in Malibu

It is often the case in a complicated library that a procedure in a library may have to be customized for a particular
application or that the application will need to be notified of certain events in a procedure.

Malibu Library User's Manual 19

An example of the former case is data processing. The Malibu library contains means for getting messages and data from a
target baseboard, but it obviously has no way of knowing how the application wishes to process the command. In this case,
the application needs to insert custom code in this place to complete the process.

An example of the latter is progress messages. If a process such as COFF downloading or logic downloading takes a
considerable amount of time, an application may wish to display some feedback to the user giving the current progress. An
event can perform this notification as part of the download process.

In order to support event callbacks, a class needs to create an instance of the OpenWire::EventHandler template. The
template parameter is the Event data class, which is the parametric information passed into the installed callback handler
when an event is called. The application provides a handler for an event by calling the SetEvent() method.

UI Thread Synchronization

One additional aspect of event callbacks involves user-interface (UI) functions. An event handler often is triggered in a
different thread than the main user-interface thread. The use of background threads allows time-consuming tasks to work
without interfering with the responsiveness of the main program. But this leads to a problem if event handlers are executed
from within the context of a background thread and the handler are expected to update a user-interface (UI) element such as a
progress bar, or edit control. Since user interfaces are built atop APIs such as Win32 and Qt which are not thread-safe, such
UI control updates are not thread-safe and can cause mysterious, unpredictable failures in an application at runtime.

To avoid this, an event handler can be “thunked” or “synchronized” with the main thread by using the Thunk() or
Synchronize() method. Even though invoked from within a background thread, the installed, user-specific event handler
will be executed within the context of the main UI thread, albeit at a slight efficiency penalty. Note that most of the event
handlers built into Malibu objects which are routinely used for UI updates are thunked or synchronized by default.
However, the synchronization behavior of any event may be overridden using these methods within application code, if
desired.

Using the Malibu Library

The Malibu library is a library of standard C++ classes. Its classes are created and used in a similar fashion to the classes of
the standard library. Versions of the library are built for Visual C++ (v7, v8 and v9), for Borland C++ (BDS2006/TurboC++
and BCB6) and for GNC C++ under Linux. The code that interacts with Malibu classes is identical on all versions – the
differences actually come when interacting with the different APIs for the visual portion of the application.

The Malibu library provides a simple means of accessing the features of the Innovative baseboards, and streaming data
between a Host application and target peripherals. By using Malibu, you can easily process and analyze data in real-time, as
it is moved to and from the hardware.

The Malibu system uses a number of classes to perform data acquisition and analysis functions. Depending on the operations
to be performed, you may need a streaming class, one or more baseboard classes, analysis classes and so on. The properties
of the baseboard classes are used to define the system configuration. The properties of the analysis classes and especially the
connections to other analysis components are crucial in defining the data analysis.

Event handler callbacks are another major part of creating an application in Malibu. Malibu objects provide 'Events' that the
user can install a handler for that provide feedback or to customize processing.

Malibu Library User's Manual 20

Creating a Streaming Application in Visual C++

Creating the Malibu Objects
First we will declare the necessary objects. In this case we are developing an MFC application and we have selected a dialog-
based application in the Visual C++ wizard, so that we can have a visual means of laying out the main window. This is a
common technique in Visual C++.

The best place for the declarations is the dialog class that was auto-created by the application wizard. Here is how the code
will look like if the code if we have given the name CAppDlg to our dialog class:

namespace Innovative
{
 class Uwb;
 class Quadia;
 class C64xDsp;
 class DataLogger;
}

class CAppDlg : public CDialog
{
...
...
private:
 Innovative::Uwb * Uwb[2];
 bool UwbOpened[2];
 Innovative::Quadia * Quadia;
 bool QuadiaOpened;
 Innovative::C64xDsp * Dsp[4];
 bool DspOpened[4];
 Innovative::TiBusmasterStream * Stream[4];
 bool StreamConnected[4];

 Innovative::IntegerBuffer BB2;
 Innovative::DataLogger * Log;
...
...
protected:

 void CoffLoadProgressHandler(Innovative::ProcessProgressEvent & event);
 void CoffLoadCompleteHandler(Innovative::ProcessCompletionEvent & event);
 void MailAvailableHandler(Innovative::TiBusmasterStreamDataEvent & event);
 void PacketAvailableHandler(Innovative::TiBusmasterStreamDataEvent & event);
 };

In this application we will be creating several baseboard objects. The Quadia baseboard has 4 C64x Dsps on it, each of which
has its own baseboard. In addition there may be 2 UWB Ultra Wideband PMC baseboards on the Quadia. The header only
contains pointers to the objects. The actual objects will be created later.

Later in the declaration are several event handler functions. Each handler has the signature of the event it handles, which is a
single class that holds parameters for the handler.

Now it's time to initialize the objects. The OnInitDialog member function is a good place for initialization, since the dialog
controls are available but the window is not visible.

BOOL CAppDlg::OnInitDialog()
{

Malibu Library User's Manual 21

 ...
 ...
 //
 // Create devices (but don't open!)
 Quadia = new Innovative::Quadia();

 ...
 ...

 Uwb[0] = new Innovative::UwbCs;
 Uwb[1] = new Innovative::UwbCs;

 //
 // Coff File progress events
 for (int i=0; i<4; i++)
 {
 Dsp[i] = new Innovative::C64xDsp;

 Dsp[i]->Cpu().OnCoffLoadProgress.SetEvent(this, &CAppDlg::CoffLoadProgressHandler);
 Dsp[i]->Cpu().OnCoffLoadProgress.Synchronize();
 Dsp[i]->Cpu().OnCoffLoadComplete.SetEvent(this, &CAppDlg::CoffLoadCompleteHandler);
 Dsp[i]->Cpu().OnCoffLoadComplete.Synchronize();
 Dsp[i]->SdramCE = SdramCE;
 }

 for (int i=0; i<4; i++)
 {
 Stream[i] = new Innovative::TiBusmasterStream();
 Stream[i]->OnMailAvailable.SetEvent(this, &CAppDlg::MailAvailableHandler);
 Stream[i]->OnMailAvailable.Synchronize();
 Stream[i]->OnPacketAvailable.SetEvent(this, &CAppDlg::PacketAvailableHandler);
 Stream[i]->OnPacketAvailable.Synchronize();
 }

 return TRUE; // return TRUE unless you set the focus to a control
}

Initializing Object Properties and Events
The code immediately after the constructor of the C64xDsp and TiBusmasterStream objects are to attach handlers to
events contained in the baseboard and its subsystems. In the case of the C64xDsp object, the COFF loading interface returned
by the Cpu() member function has the OnCoffLoadProgress event.

This event will be called during the downloading of code to the Dsp in order to give a completion percentage of the
download. The handler usually updates a progress bar with this data to give visual feedback. Because this handler will update
the GUI, it needs to be synchronized with the GUI main thread. This is done by the call to the Synchronize() member
function of the event handler object.

Below that code is the initialization of the streams. Each DSP will have its own stream object to manage . These objects have
events associated with data arriving from the target. The two event handlers are attached to functions and set to be
synchronized here.

This code also shows setting a property of a baseboard. SdramCE is a property that sets which addressing space on the target
the SDRAM is located. For the Quadia, it needs to be initialized to 0.

Malibu Library User's Manual 22

In order to use a baseboard, it must be associated with an actual device. Each device in the system is given a unique index
known as the Target ID. After being assigned a target number, the device can be attached to the hardware with a call to
Open():

 // Open Cpus 0 and 1 & connect their streams
 Dsp[0]->Target(0);
 Dsp[0]->Open();
 DspOpened[0] = true;
 Stream[0]->ConnectTo(Dsp[0]);
 StreamConnected[0] = true;

 Dsp[1]->Target(1);
 Dsp[1]->Open();
 DspOpened[1] = true;
 Stream[1]->ConnectTo(Dsp[1]);
 StreamConnected[1]= true;
 AppendToLog("C64x Pair #0, #1 Opened...");

In order to perform I/O with a baseboard, a stream object needs to be connected to it. This is done by the ConnectTo()
method. If a baseboard does not support a type of streaming, the ConnectTo() call will not compile.

Event Handler Code
Data comes from the target via stream event handlers. 'Mail' messages are small (16 word) packets of data intended for
command and control information exchange. Two words of the message is a header that is divided into standard fields. The
TypeCode field is usually used for distinguishing different types of messages:

//---
// CAppDlg::MailAvailableHandler() --
//---

void CAppDlg::MailAvailableHandler(Innovative::TiBusmasterStreamDataEvent & event)
{
 //
 // Read the mail message packet
 Innovative::MatadorMessage Msg;
 event.Sender->Recv(Msg);

 CString Txt;
 Txt.Format("Dsp Target %d Message:", event.Sender->Target());
 AppendToLog(Txt);

 switch (Msg.TypeCode())
 {
 case kChannelInitMsg:
 {
 //TargetLogin = true;
 int Ver = Msg.Data(0) - 0x100;
 CString Txt;
 Txt.Format("Target logged in OK - Ver: %d\r\n", Ver);
 AppendToLog(Txt);

 AppendToLog("Blocks Rcvd: 0");
 }
 break;

 case kDInInfo:
 {
 CString Txt;
 Txt.Format("Ev/Buf: %d\r\n", Msg.Data(0));

Malibu Library User's Manual 23

 AppendToLog(Txt);
 Txt.Format("Actual: %d\r\n", Msg.Data(1));
 AppendToLog(Txt);
 Txt.Format("Burst: %d\r\n", Msg.Data(2));
 AppendToLog(Txt);
 Txt.Format("Actual: %d\r\n", Msg.Data(3));
 AppendToLog(Txt);
 }
 break;

 case kThresholdAlert:
 {
 AppendToLog("ALERT");
 CString Txt = "Threshold Alert Rcvd";
 AppendToLog(Txt);
 }
 break;

 case kOverflowAlert:
 {
 AppendToLog("ALERT");
 CString Txt = "Overflow Alert Rcvd";
 AppendToLog(Txt);
 }
 break;

 default:
 {
 AppendToLog("Invalid DSP message received");
 }
 break;
 }

 MessageBeep(MB_OK);
}

The event handler argument contains parameters for the event. In this case, the event data structure contains a pointer to the
stream that generated the event. This pointer is used to actually extract the message via the Recv() method.

Handling the packet data event is similar: the buffer is extracted using the Recv() method and processed. In this case the
data is logged using the LogDataBlock() function.

//---
// CAppDlg::PacketAvailableHandler() --
//---

void CAppDlg::PacketAvailableHandler(Innovative::TiBusmasterStreamDataEvent & event)
{
 static int PacketCount(0);
 // Since we got this message we know a buffer is available. So read it now.
 // Buffer will be sized to fit the incoming data.
 event.Sender->Recv(BB2);
 //
 // Find which Cpu is our target
 int DspIdx;
 for (int i=0; i<4; i++)
 if (DspOpened[i])
 {
 if (event.Sender->Target() == CaptureInfo[i].Target)
 {
 DspIdx = i;
 break;

Malibu Library User's Manual 24

 }
 }
 // ...DspIdx is which Dsp # to use
 //
 // Increment
 CaptureInfo[DspIdx].CaptureBlocks++;
 //
 // Log the data block
 LogDataBlock(DspIdx, BB2);
 //
 // Update message showing data arrival.
 CString Text;
 Text.Format("Dsp %d, Packet %d with %d words arrived", DspIdx, ++PacketCount, BB2.IntSize());
 AppendToLog(Text);

}

Loading COFF Files
Operations such as downloading COFF files to a DSP are grouped in an interface class so that the methods used to perform
them and the events presented are the same from board to board. This code initiates a download to all four CPUs on a
Quadia. Events can be hooked to provide feedback on the progress of the download.

void CAppDlg::OnBnClickedDownloadCoff()
{
 CString filename;
 CoffFileNameEdit.GetWindowText(filename);
 std::string FileName(filename);

 for (int i=0; i<4; i++)
 if (DspOpened[i])
 {
 AppendToLog("---------------------------------------");
 CString Txt;
 Txt.Format("-- COFF Load Dsp #%d", i);
 AppendToLog(Txt);
 AppendToLog("---------------------------------------");

 Dsp[i]->Cpu().DownloadCoff(FileName);
 }
}

Loading Logic Files
Many baseboards have down-loadable logic to provide customized behavior. Loading this logic is also grouped into an
interface class. In the code below, one of the Quadia's two logic chips is being loaded. The interface class also contains
events that can be hooked to provide feedback in the user interface.

//---
// BaseboardLogicLoadDialog::OnBnClickedQfpga1Cfgbtn() --
//---

void BaseboardLogicLoadDialog::OnBnClickedQfpga1Cfgbtn()
{
 if (!Owner->QuadiaOpened)
 {
 Owner->AppendToLog("No Quadia Installed");
 return;
 }

 CString ExoFilename;

Malibu Library User's Manual 25

Fpga1FileName.GetWindowText(ExoFilename);

 if (! Innovative::IIFileExists(ExoFilename))
 throw Innovative::IIException("Exo file not found!");

 Owner->AppendToLog("-----------------------\r\nParsing FPGA 1");
 Owner->UpdateWindow();
 Owner->Quadia->Logic(1).ConfigureFpga(std::string(ExoFilename));
 Owner->AppendToLog("-----------------------\r\n");
 Owner->UpdateWindow();
}

Script Files
Many PMC modules feature user-reprogrammable FPGA logic. As the behavior of this logic is subject to change to
accommodate user requirements, it is commonplace to map registers into the User FPGA on these modules to support
configuration and control.

To facilitate rapid prototyping of new logic, Malibu features two script interpreter classes Scripter and GcScripter.
These classes parse the contents of a text file at application runtime, calling predefined event handlers during the process. By
overloading these handlers within application code, it is possible to read and write to custom user logic registers at strategic
times during application execution.

For instance, the Digital Receiver PMC module supports four GrayChip 5016 down-converter ICs. These are sophisticated
devices with a large complement of mapped registers used to configure the down-conversion process. Rather than building
one particular initialization pattern for these devices into the DigitalReceiver class, Malibu defers the initialization
process for these IC devices into the application domain.

The application program instantiates a GcScripter object, and calls the Execute method on this object at the inception of
analog data flow, within the OnStreamStart event handler of the DigitalReceiver object. In turn, the GcScripter object
parses a user-authored text file which contains initialization commands targeting the GC5016 devices addressable through the
command-channel (PCI bus). The initialization command file may be created manually, or the Texas Instruments -supplied
utility for creation of 5016-compliant initialization files may be used. Regardless of the origin of this file, its contents will be
parsed and used to initialize the 5016 devices dynamically at application runtime, without requiring recompilation of the
Malibu libraries.

Later, once the initialization sequence is finalized, the contents of the script can be subsumed into the application directly,
and explicit calls to PokeDdcReg used to initialize the 5016 IC devices, eliminating need for the GcScripter object.

Malibu Library User's Manual 26

Chapter 3. Creating Applications using an IDE

Developing an application will more than likely involve using an integrated development environment (IDE) , also known as
an integrated design environment or an integrated debugging environment. This is a type of computer software that assists
computer programmers in developing software.

The following sections will aid in the initial set-up of these applications in describing what needs to be set in Project Options
or Project Properties for each of the supported development environments.

Creating a Malibu Project in Microsoft Visual Studio 7

Creating a project that will successfully build a Malibu project requires a few extra steps beyond making a new, empty form
project.

Enabling Auto-Saving of Projects

Files and project settings in MSVC should be set to be whenever the program is compiled. This avoids the problem when a
program crash causes the loss of much programming effort.

To change the setting, open the Environment
Options by selecting Tools | Options from the
main Menu.

Selecting this will open the Options dialog.

Select the Environment | Projects and
Solutions entry in the list on the left. The
Build and Run Options section should be set
to Save all Changes ensure that everything
will be saved before each project compilation.

This option is set by default.

Malibu Library User's Manual 27

Creating a Malibu Project

Since MSVC knows nothing about Malibu, the basic project options need to be modified to allow the compiler to find
Malibu. The Project Option dialog is displayed when the menu Project | <ProjectName> Properties... is selected.

There are two places where the system needs to be informed of the location of library files. These are

1) The “Include Path”, which allows header source files to be found in the compilation process.

2) The “Library Path”, which allows the linker to find the libraries to search for code modules the application
requires.

First we will change the Include Path. On the C/C++ |
General page of the Property Page dialog, The Additional
Include Directories entry determines the extra directories
where source files will be searched for. You can just edit the
path itself, but an easier way is to select the path, and then
press the '...' button that appears in the edit control to display
a path editing control dialog.

The path editing control allows directories to be rearranged,
and each entry can be edited by selecting it, browsing to a
directory by pressing the '...' button and replacing the result
in the list.

Here, we wish to add the Malibu source directory to the list.
By default, this is installed at C:\Innovative\Malibu. In
this case, we use a relative path to indicate its location.

There are several ways that you can define these paths, each
with advantages and disadvantages.

Malibu Library User's Manual 28

Table 1. Path Spec Options

Type of Path Spec Advantages Disadvantages Example

Relative Path Doesn't need to be changed if project
moves only at same level below
source directory.

Doesn't require the project know
where Malibu source directory is or
what name the install directory has.

Lots of “..”s. Hard to set up.

Requires projects be under
the Innovative tree.

..\..\..\Malibu

Absolute Path Project doesn't have to be located
under the Innovative source tree.

Project can be moved after creation
without change.

Project must be on same
drive as Malibu source
directory.

Project has to know the
name of the Malibu install
directory.

\Innovative\Malibu

Full Path plus Drive
Letter

Project can be anywhere in system. Requires that Malibu source
directory never moves.

Project has to know the
name and drive of the
Malibu install directory.

C:\Innovative\Malibu

The Innovative Examples use relative paths, since we wish to have to specify the name and location of the Malibu source.
User projects may have other constraints that make one of the other options more desirable.

To set the library path, on the Linker | General page of the
Property Page dialog, the Additional Library Directories entry
determines the extra directories that will be searched to find
libraries. You can just edit the path itself, but an easier way
is to select the path, and then press the '...' button that appears
in the edit control to display a path editing control dialog.

Here, we wish to add the Malibu Library directory to the list.
There are several directories for libraries, since the source
must be built for each compiler. For MSVC 7.0, this is
installed at C:\Innovative\Lib\Vc7. In this case, we use
a relative path to indicate its location.

Other Configuration Requirements

Since Malibu applications are multi-threaded, your application should be configured to use Multi-threaded libraries, via the
Configuration Properties | C/C++ | Code Generation | Runtime Library option. When building console
or unmanaged applications, select Multi-threaded Debug (/MTd) or Multi-threaded (/MT). When building
managed code, select the DLL variants of these libraries.

Malibu Library User's Manual 29

Disable use of precompiled headers by setting Configuration Properties | C/C++ | Precompiled Headers |
Create/Use Precompiled Header to Not Using Precompiled Headers.

When the C Run-Time (CRT) library and Microsoft Foundation Class (MFC) libraries are linked in the wrong order, you
may receive a LNK2005 error such as:

nafxcwd.lib(afxmem.obj) : error LNK2005:

"void * __cdecl operator new(unsigned int)"(??2@YAPAXI@Z) already defined in
LIBCMTD.lib(new.obj)

The CRT libraries use weak external linkage for the new, delete, and DllMain functions. The MFC libraries also contain
new, delete, and DllMain functions. These functions require the MFC libraries to be linked before the CRT library is linked.

When you use the MFC libraries, you must make sure that they are linked before the CRT library is linked. You can do this
by making sure that every file in your project includes Msdev\Mfc\Include\Afx.h first, either directly (#include
<Afx.h>) or indirectly (#include <Stdafx.h>). The Afx.h include file forces the correct order of the libraries, by using
the #pragma comment (lib,"<libname>") directive.

If the source file has a .c extension, or the file has a .cpp extension but does not use MFC, you can create and include a small
header file (Forcelib.h) at the top of the module. This new header makes sure that the library search order is correct.
Visual C++ does not contain this header file. To create this file, follow these steps:

1. Open Msdev\Mfc\Include\Afx.h.

2. Select the lines between #ifndef _AFX_NOFORCE_LIBS and #endif //!_AFX_NOFORCE_LIBS.

3. Copy the selection to the Windows Clipboard.

4. Create a new text file.

5. Paste the contents of the Clipboard into this new file.

6. Save the file as Msdev\Mfc\Include\Forcelib.h.

See http://support.microsoft.com/default.aspx/kb/148652 for details.

Creating a Malibu Project in Microsoft Visual Studio Vc8/Vc9

Creating a project that will successfully build a Malibu project requires a few extra steps beyond making a new, empty
Windows Form project.

Malibu Library User's Manual 30

http://support.microsoft.com/default.aspx/kb/148652

Enabling Auto-Saving of Projects

Files and project settings in Visual Studio should be set to be whenever the program is compiled. This avoids the problem
when a program crash causes the loss of much programming effort.

To change the setting, open the Environment
Options by selecting Tools | Options from the
main Menu.

Selecting this will open the Options dialog.

Select the Environment | Projects and
Solutions entry in the list on the left. The
Build and Run page has a Before building:
combo box at the top. It should be set to Save
all Changes ensure that everything will be
saved before each project compilation.

This option is set by default.

Creating a Malibu Project

Since Visual Studio knows nothing about Malibu, the basic project options need to be modified to allow the compiler to find
Malibu. The Project Option dialog is displayed when the menu Project | <ProjectName> Properties... is selected.

There are two places where the system needs to be informed of the location of Malibu support files. These are

3) The “Include Path”, which allows header source files to be found in the compilation process.

4) The “Library Path”, which allows the linker to find the libraries to search for code modules the application
requires.

Malibu Library User's Manual 31

First we will change the Include Path. On the C/C++ |
General page of the Property Page dialog, The Additional
Include Directories entry determines the extra directories
where source files will be searched for. You can just edit the
path itself, but an easier way is to select the path, and then
press the '...' button that appears in the edit control to display
a path editing control dialog.

The path editing control allows directories to be rearranged,
and each entry can be edited by selecting it, browsing to a
directory by pressing the '...' button and replacing the result
in the list.

Here, we wish to add the Malibu source directory to the list.
By default, this is installed at C:\Innovative\Malibu. In
this case, we use a relative path to indicate its location.

There are several ways that you can define these paths, each
with advantages and disadvantages.

Table 2. Path Spec Options

Type of Path Spec Advantages Disadvantages Example

Relative Path Doesn't need to be changed if project
moves only at same level below
source directory.

Doesn't require the project know
where Malibu source directory is or
what name the install directory has.

Lots of “..”s. Hard to set up.

Requires projects be under
the Innovative tree.

..\..\..\Malibu

Absolute Path Project doesn't have to be located
under the Innovative source tree.

Project can be moved after creation
without change.

Project must be on same
drive as Malibu source
directory.

Project has to know the
name of the Malibu install
directory.

\Innovative\Malibu

Malibu Library User's Manual 32

Type of Path Spec Advantages Disadvantages Example

Full Path plus Drive
Letter

Project can be anywhere in system. Requires that Malibu source
directory never moves.

Project has to know the
name and drive of the
Malibu install directory.

C:\Innovative\Malibu

The Innovative Examples use relative paths, since we wish to have to specify the name and location of the Malibu source.
User projects may have other constraints that make one of the other options more desirable.

To set the library path, on the Linker | General page of the
Property Page dialog, the Additional Library Directories entry
determines the extra directories that will be searched to find
libraries. You can just edit the path itself, but an easier way
is to select the path, and then press the '...' button that appears
in the edit control to display a path editing control dialog.

Here, we wish to add the Malibu Library directory to the list.
There are several directories for libraries, since the source
must be rebuilt for each version of the compiler and
platform. For Visual Studio 2005, the libraries are installed at
C:\Innovative\Lib\Vc8. For Visual Studio 2008,
C:\Innovative\Lib\Vc9. The 64-bit platform libraries
are located at C:\Innovative\Lib\Vc9_x64.

Other Configuration Requirements

Since Malibu applications are multi-threaded, your application should be configured to use Multi-threaded libraries, via the
Configuration Properties | C/C++ | Code Generation | Runtime Library option. When building console
or unmanaged applications, select Multi-threaded Debug (/MTd) or Multi-threaded (/MT). When building
managed code, select the DLL variants of these libraries.

Disable use of precompiled headers by setting Configuration Properties | C/C++ | Precompiled Headers |
Create/Use Precompiled Header to Not Using Precompiled Headers.

When the C Run-Time (CRT) library and Microsoft Foundation Class (MFC) libraries are linked in the wrong order, you
may receive a LNK2005 error such as:

nafxcwd.lib(afxmem.obj) : error LNK2005:

"void * __cdecl operator new(unsigned int)"(??2@YAPAXI@Z) already defined in
LIBCMTD.lib(new.obj)

The CRT libraries use weak external linkage for the new, delete, and DllMain functions. The MFC libraries also contain
new, delete, and DllMain functions. These functions require the MFC libraries to be linked before the CRT library is linked.

Malibu Library User's Manual 33

When you use the MFC libraries, you must make sure that they are linked before the CRT library is linked. You can do this
by making sure that every file in your project includes Msdev\Mfc\Include\Afx.h first, either directly (#include
<Afx.h>) or indirectly (#include <Stdafx.h>). The Afx.h include file forces the correct order of the libraries, by using
the #pragma comment (lib,"<libname>") directive.

If the source file has a .c extension, or the file has a .cpp extension but does not use MFC, you can create and include a small
header file (Forcelib.h) at the top of the module. This new header makes sure that the library search order is correct.
Visual C++ does not contain this header file. To create this file, follow these steps:

1. Open Msdev\Mfc\Include\Afx.h.

2. Select the lines between #ifndef _AFX_NOFORCE_LIBS and #endif //!_AFX_NOFORCE_LIBS.

3. Copy the selection to the Windows Clipboard.

4. Create a new text file.

5. Paste the contents of the Clipboard into this new file.

6. Save the file as Msdev\Mfc\Include\Forcelib.h.

See http://support.microsoft.com/default.aspx/kb/148652 for details.

Since Malibu is compiled as native code, pure .NET applications cannot be built. However, you may build build mixed-
mode applications. Set the Configuration Properties | General | Common Language Runtime Support to Common
Language Runtime Support (/clr).

Mixed-mode code, .NET applications manage two heaps, one for the .NET code and another for the native code. To work-
around an initialization bug within the .NET runtime libraries which fail to initialize both heaps properly, it is essential to
force a reference to a C runtime initialization module within the Microsoft-supplied libraries. To do this, you must add a
symbol to Configuration Properties | Linker | Input | Force Symbol References. For 32-bit code, add the symbol
__DllMainCRTStartup@12. For 64-bit code, add the symbol _DllMainCRTStartup.

Creating a Malibu Application using Nokia QtCreator

Creating a project that will successfully build a Malibu application requires a few extra steps beyond making a new, empty
QtForm project.

Install and/or Rebuild Qt Library

QtCreator projects rely on the open-source Qt controls to implement user interface elements. Download the latest, all-
inclusive Qt package from Nokia QtCreator Website. Then, install following the instructions provided on the site. If using
one of the provided binary installers, this is accomplished by executing

Malibu Library User's Manual 34

http://qt.nokia.com/products/developer-tools
mailto:__DllMainCRTStartup@12
http://support.microsoft.com/default.aspx/kb/148652

./qt-sdk-linux-x86-opensource-2009.05.bin

from the command line.

Malibu is dependent on the Jungo WinDriver device-driver libraries. These libraries may be downloaded from
http://www.innovative-dsp.com/ftp/Linux/WinDriver.tar.gz and should be extracted into a user-accessible location on your
hard disk, (typically /home/WinDriver). Due to the volatility of the Linux kernel and its multiple distributions, it is
necessary to rebuild the Jungo WinDriver and the associated Innovative kernel plug-in prior to running applications.
Instructions to accomplish this are located in the Linux Notes on our website.

Following successful installation, launch QtCreator.

Create a new project by clicking the File | New File or Project menu item.

Malibu Library User's Manual 35

http://www.innovative-dsp.com/support/linux/LinuxNotes.pdf
http://www.innovative-dsp.com/ftp/Linux/WinDriver.tar.gz

Select Qt4 Gui Application or Qt4 Console Application, depending on the type of project required. Browse to a location in
which to store the new project:

Accept the defaults for the Qt library dependencies:

Malibu Library User's Manual 36

This creates a new, empty project.

Next, edit the .pro project file to incorporate the Malibu libraries. The addition of the LIBS directive in the .pro file
automatically links in all required Malibu libraries.

Project created by QtCreator 2009-12-17T08:49:47

TARGET = Snap
TEMPLATE = app
SOURCES += main.cpp \
 mainwindow.cpp \
 ../Common/ApplicationIo.cpp \
 ../Common/ModuleIo.cpp

HEADERS += mainwindow.h

FORMS += mainwindow.ui

DEFINES += GCC

unix:HOMEDIR = "/usr/Innovative"
unix: DEFINES += LINUX

Malibu Library User's Manual 37

win32:HOMEDIR = $$(INNOVATIVECOMMON)
CONFIG(debug, debug|release) {
 OBJECTS_DIR = Debug
 DESTDIR = Debug
}
else {
 OBJECTS_DIR = Release
 DESTDIR = Release
}

LIBS += -L$$HOMEDIR/Lib/Gcc \
 -L$$HOMEDIR/Lib/Gcc/$(OBJECTS_DIR) \
 -Wl,@$$HOMEDIR/Lib/Gcc/Malibu_Qt.lcf

INCLUDEPATH = $$HOMEDIR/Malibu ../Common

This project will now compile and run, but does not yet incorporate any Innovative board control functionality. It's typically
most efficient to subsume the entire ApplicationIo class from an example program provided with your card directly into the
new application in order to insure that you have all of the necessary initialization and event closures required.

Creation of a headless or console-style application is also supported. To build such an application, stub out the functionality
of the UserInterface class which is passed by pointer to the ApplicationIo object. And change the .pro file above to link
against Malibu_Con.lcf instead of Malibu_Qt.lcf. See the zen console forum thread for details.

Creating a Malibu Project in Borland Developer's Studio/Turbo C++

Developing an application will more than likely involve using an integrated development environment (IDE) , also known as
an integrated design environment or an integrated debugging environment. This is a type of computer software that assists
computer programmers in developing software.

Creating a project that will successfully build a Malibu project requires a few extra steps beyond making a new, empty VCL-
Form-based project.

The following sections will aid in the initial set-up of these applications in describing what needs to be set in Project Options.

Enabling Auto-Saving of Projects

By default, files and project settings in Builder are only saved when you manually save them. In practice, this can be risky as
a crashing program can cause the loss of much programming effort. You can change BDS to save all files and project settings
whenever a project is compiled. This takes little time, and increases the safety of using the compiler.

Malibu Library User's Manual 38

http://www.iidsp.com/forum/viewtopic.php?t=543&highlight=zen

To change the setting, open the Environment
Options by selecting Tools | Environment
Options from the main Builder Menu.

Selecting this will open the Environment
Options dialog.

Select the Preferences tab. In the top left side,
select the Autosave option's two check boxes
to ensure that both the Editor files and Project
desktop will be saved before each project
compilation.

Default Project Options which should be Changed

BCB10 (Borland Turbo C++) Project Settings

When creating a new application with File, New, VCL Forms Application - C++ Builder

Change the Project Options for the Compiler:

Project Options
 ++ Compiler (bcc32)
 C++ Compatibility
 Check ‘zero-length empty base class (-Ve)’
 Check ‘zero-length empty class member functions (-Vx)’

Failure to change these options may result in an access violation when attempting to enter any OpenWire Event function.

i.e.
Access Violation OnLoadMsg.Execute – Load Message Event

Because of statement
Board->OnLoadMsg.SetEvent(this, &ApplicationIo::DoLoadMsg);

Malibu Library User's Manual 39

Change the Project Options for the Linker:

Project Options
 Linker (ilink32)
 Linking – uncheck ‘Use Dynamic RTL’

In our example Host Applications, if not unchecked, this will cause the execution to fail before the Form is constructed.

Error: First chance exception at $xxxxxxxx. Exception class EAccessViolation with message “Access Violation!”
Process ???.exe (nnnn)

Other considerations:

 Project Options
 ++ Compiler (bcc32)
 Output Settings
 check – Specify output directory for object files(-n)
 (release build) Release
 (debug build) Debug
 Paths and Defines
 add Malibu
 Pre-compiled headers
 uncheck everything
 Linker (ilink32)
 Output Settings
 check – Final output directory
 (release build) Release
 (debug build) Debug
 Paths and Defines
 (ensure that Build Configuration is set to All Configurations)
 add Lib/Bcb10
 (change Build Configuration to Release Build)
 add lib\bcb10\release
 (change Build Configuration to Debug Build)
 add lib\bcb10\debug
 (change Build Configuration back to All Configurations)

 Packages
 uncheck - Build with runtime packages

Malibu Library User's Manual 40

Creating Projects in Borland C++ Builder 6.0

Creating a project that will successfully build a Malibu project requires a few extra steps beyond making a new, empty form
project.

Enabling Auto-Saving of Projects

By default, files and project settings in Builder are only saved when you manually save them. In practice, this can be risky as
a crashing program can cause the loss of much programming effort. You can change Borland to save all files and project
settings whenever a project is compiled. This takes little time, and increases the safety of using the compiler.

To change the setting, open the Environment
Options by selecting Tools | Environment
Options from the main Builder Menu.

Selecting this will open the Environment
Options dialog.

Select the Preferences tab. In the top left side,
select the Autosave option's two check boxes
to ensure that both the Editor files and Project
desktop will be saved before each project
compilation.

Creating a Malibu Project

Since Borland knows nothing about Malibu, the basic project options need to be modified to allow the compiler to find
Malibu. The Project Option dialog is displayed when the menu Project | Options... is selected.

Malibu Library User's Manual 41

While it is not a required setting, and is not Malibu specific,
we recommend that the use of the dynamic C++ run-time
library be turned off.

The advantage of using this setting is a somewhat smaller
EXE file. The disadvantage of using it is that the DLL file
has to accompany the EXE or be installed on the target
computer for the program to work. This usually is more
trouble than the size decrease is worth.

To disable this option, select the Linker tab. The check box is
the second selection in the upper right: Use dynamic RTL.

For similar reasons, Borland's packages should also be static
bound. This increases the size of the executable, but allows it
to run with a minimum of extra files.

In the Runtime Packages group box in the lower portion of
the Packages tab, uncheck the Build with runtime packages
check box.

Malibu Library User's Manual 42

The compiler now needs to be informed of Malibu's location. There are three places where the system needs to be informed
of the location of library files. These are

5) The “Include Path”, which allows header source files to be found in the compilation process.

6) The “Library Path”, which allows the linker to find the libraries to search for code modules the application
requires.

7) The “Debug Source Path”, which is used in debugging to locate code that is being stepped through.

Each of these paths is set by the Directories/Conditionals tab
of the Project Options dialog.

First we will change the Include Path. You can just edit the
path itself, but an easier way is to press the '...' button next to
the edit control to display a path editing control dialog.

The path editing control allows directories to be rearranged,
and each can be edited by selecting it, changing it in the
dialog below, and replacing the result in the list.

Here, we wish to add the Malibu source directory to the list.
By default, this is installed at C:\Innovative\Malibu. In
this case, we use a relative path to indicate its location.

There are several ways that you can define these paths, each
with advantages and disadvantages.

Malibu Library User's Manual 43

Table 3. Path Spec Options

Type of Path Spec Advantages Disadvantages Example

Relative Path Doesn't need to be changed if project
moves only at same level below
source directory.

Doesn't require the project know
where Malibu source directory is or
what name the install directory has.

Lots of “..”s. Hard to set up.

Requires projects be under
the Innovative tree.

..\..\..\Malibu

Absolute Path Project doesn't have to be located
under the Innovative source tree.

Project can be moved after creation
without change.

Project must be on same
drive as Malibu source
directory.

Project has to know the
name of the Malibu install
directory.

\Innovative\Malibu

Full Path plus Drive
Letter

Project can be anywhere in system. Requires that Malibu source
directory never moves.

Project has to know the
name and drive of the
Malibu install directory.

C:\Innovative\Malibu

The Innovative Examples use relative paths, since we wish to have to specify the name and location of the Malibu source.
User projects may have other constraints that make one of the other options more desirable.

To set the library path, select the path editing option button
next to the library path edit control.

Here, we wish to add the Malibu Library directory to the list.
There are several directories for libraries, since the source
must be built for each compiler. For Borland C++ Builder
6.0, this is installed at C:\Innovative\Lib\Bcb. In this
case, we use a relative path to indicate its location.

Malibu Library User's Manual 44

To set the debug source path, select the path editing option
button next to the debug source edit control.

Here, we wish to add the Malibu Source directory to the list.
Again, this is installed by default at
C:\Innovative\Malibu. In this case, we use an absolute
path and drive letter to indicate its location.

Malibu Library User's Manual 45

Chapter 4. The Malibu Framework Library

The Malibu framework library Framework_Mb.lib contains classes which interact with the operating-system at a low-level
to allow inter-thread notification used to synchronize execution via the Malibu OpenWire::Event mechanism. Also, a
provision to access the application command-line is available, which facilitates authoring of more-portable programs.

The contents of the framework library differ, depending on the application programming interface in use. Under Windows
using Borland or Microsoft IDEs, methods within the Win32 API are used to provide inter-thread messaging which forms the
basis for thunking between threads. Under Linux, use of the wxWidgets API compiled using GNC C++ is used to
accomplish similar thunking. Consequently, be aware that the specific source files in the Framework_Mb project differ as a
function of the tool chain in use.

Framework Support Classes

Thunking

Special care must be taken within multi-threaded applications operating in the context of a user-interface. Specifically,
simultaneous calls to UI code from one or more background threads is illegal. To circumvent this limitation, Malibu includes
provisions for automatically marshaling (thunking) code execution from a background into the foreground GUI thread
context when using OpenWire::Event objects.

In order to provide portability amongst various OS frameworks, Malibu implements different versions of the code needed to
thunk between threads. All supported frameworks implement an object of type ThunkerIntf within the Framework_Mb
library to accomplish this. .

Class Description

ThunkerIntf Abstract base class from which API-specific thunking class is derived. Provides means of inter-
thread notification, usually via a posted message of some sort sent from within the (Malibu)
background thread context and dispatched within the foreground (UI) thread context.

CommandLineArguments Abstract base class from which API-specific concrete class is derived. Provides means of retrieving
command-line from operating system using framework-specific methods.

Malibu Library User's Manual 46

Chapter 5. The Malibu OS Library

The Malibu utility library Os_Mb.lib contains classes which interact with the operating-system at a low-level to allow
creation of threads and to synchronize their execution via events, semaphores and mutexes. These features are built atop the
Jungo WinDriver package to provide portability between operating systems such as Windows and Linux.

Thread Support Classes

Threads

It is often useful to run tasks in a separate background thread of execution. Malibu provides class Innovative::Thread
that simplifies the creating and using of threads, as well as derived classes that are used in Malibu for some commonly used
variants. For example, StartStopThread adds the ability to freeze a thread by command and the ability to wait on
several conditions.

Class Description

Thread Abstract base class from which most application threads are derived. Embedded MultipleObjects
manages multiple-condition synchronization.

StartStopThread Extension of Thread base class which implements bipolar execution model: Thread may be running
or suspended, but remains live and usable in memory.

Sleep Block for specified number of millseconds

uSleep Block for specified number of microseconds

Signals

When using threads, it is essential to provide efficient and safe ways to block until one or more conditions occur. This is
generally followed by processing based the signaled condition(s). Malibu includes classes to simplify use of these mainstay
building blocks.

Class Description

Semaphore Managed counter. When counter is non-zero, thread is signaled.

Event Boolean state signal. When active, thread is signaled. Both persistent or single-shot modes
supported.

MultipleObjects Smart container for Semaphores and Events. Provides ability to block until either these
synchronization objects signals, then unblocks thread, identifies the condition which unblocked the
thread to facilitate processing.

Malibu Library User's Manual 47

Resource Control

When using threads, applications must carefully govern access to shared resources such as memory or hardware devices.
Malibu provides a variety of support classes to provide exclusive control to data structures, peripherals or code sections.

Class Description

Mutex Basic mutual exclusion.

AtomicAccess Thread-safe value increment, decrement and exchange

CriticalSection Exclusive code access via critical section. Method-wise.

CriticalSectionArea Exclusive code access via critical section. Region-wise.

ThreadSafeQueue Template class providing thread-safe access to a queue object.

Inter-Thread Communications

A means of passing data efficiently between tasks within an application is commonplace. These classes support such
operations.

Class Description

MailSlot Inter-process messaging via OS mail slots (Windows-only)

ServerPipe Inter-process messaging via named pipes (server side)

ClientPipe Inter-process messaging via named pipes (client side)

Operating-System

The classes below allow access to process or application-level information maintained by the operating system.

Class Description

Application Information about the running application, such as path and name of executable

Registry Manipulation of registry variables (Windows-only)

Malibu Library User's Manual 48

Chapter 6. The Malibu Utility Library

The Malibu utility library Utility_Mb.lib contains a wide variety of common helper classes to manipulate elementary
objects such strings and buffers; perform file I/O; accurate timing measurements and delays and implement inter-object
callbacks.

Buffer Classes

The main purpose of the buffer class is to allow the blocks of data transferred around the Malibu system to be handled in
chunks freely as objects. The data inside can be accessed by an indexed access just like a C array. In addition, iterators are
provided for C++ STL-like iteration over the buffer.

The buffer class is a simple container of data and does not provide advanced access methods such as vector signal processing
functions and analysis functions needed in real-time data acquisition and control applications or for post-processing
operations. Rather, those features are present in the datagram objects Most of the classes utilize MMX and SIMD-optimized
code using the Intel Performance Primitive libraries that offer the highest performance.

The Malibu buffer classes implement copy-on-write to maximize performance. Malibu’s internal, proprietary buffer manager
has been designed for optimal real-time performance with minimal runtime heap thrashing and superfluous copy operations.

Class Description Application

Buffer Basic aligned buffer class with built-in header. Data movement between target hardware and
Host PC memory

Message Packet Classes

In addition to the large block buffer classes, there is often a need for a 'command' packet to exchange commands and
parameters with a baseboard. The MatadorMessage class encapsulates a small 16 word message format used for command
I/O on Matador baseboards and C64x DSPs. It is used by convention for other message transfer modes as well, as it provides
a good balance of small size with room for parametric data.

Disk I/O Classes

Many applications make extensive use of disk files in order to log or analyze collected data. Malibu features a number of
classes and stand-alone methods specifically-tailored to aid in these situations.

Malibu Library User's Manual 49

Class Description

IniFile Read/write access to local configuration (INI) files. Useful for persistent application storage.

BinFile Motorola S-record file reader

Data Recording and Playback Classes

Malibu provides built-in support and extensive examples for data logging and playback applications. You can record data to
and playback data from standard Windows file system disks at up to 50 Mb/s with the components supplied with Malibu.
You can also record to network drives for system integration.

Class Description Application

BinView Binview INI file generator class. Useful to create
binary data description files which providing
formatting information for data display within the
Innovative BinView applet.

Tag binary data files via secondary descriptor
file. Interface to binary viewer application.

DataLogger Records raw data received from any input device to
Windows local or network disks.

High bandwidth data recording.

RamDataLogger Records raw data received from any input device to
Windows local or network disks.

High bandwidth data recording.

DataPlayer Retrieves raw data previously stored to Windows local
or network disk for real-time output.

High bandwidth data playback.

The DataPlayer class may be used to read signals from a binary data file to be sent downstream. The downstream chain
could be as simple as a direct connection to a hardware output pin such as a module DAC or a baseboard output pin, or a
complex chain of analysis components, each processing the data in an elaborate, application-specific manner. The
component automatically fetches data from the disk as needed to sustain the real-time data flow to downstream components.
A special property, Mode, allows continuous replay of the data contained in the file when the end-of-file condition is
reached.

The DataLogger class may be used to store signals received from upstream into a binary data file. The class automatically
stores received data blocks to disk as needed to sustain the real-time data flow from upstream components. A special
property, Ceiling, allows capping of the total amount of data logged to the data file.

System Components

A useful set of system components saves development time. Classes and functions are provided for precision profiling and
delays, automatically marshal event processing into the foreground thread A stop watch allows for quick application profiling
while other components give direct access to data in RAM, facilitate the numeric display of data arrays and simplify the use
of registered Windows messages.

Class Description Application

StopWatch Precision sub-microsecond elapsed time component
for code profiling

Application profiling, precise delays.

Malibu Library User's Manual 50

OpenWire::Event Inter-class notification Implementing callbacks within libraries. May
be synchronized (marshaled) to main thread or
run in caller’s context

MalibuException Exception base class Error handling

PathSpec Class used to extract and insert components of file
path specifications

Construction/analysis of path specifications by
parts

File Support Methods

Malibu includes some stand alone functions for common file operations.

Method Description

FileExists Determine file presence

FileSize Determine file size

String Support

The following classes allow management of collection of strings in Malibu:

Class Description

StringList Quick text file parser object

StringVector Quick text file parser object

In addition there are conversion functions between numeric values and text for I/O to the user interface of an application.

Function Description

BinToHex Efficiently converts a binary array to hex string equivalent.

Endian Endian reversal

FloatToString Returns the string representation of a double value.

HexToBin Efficiently converts a hex string to byte equivalent.

IntToString Returns the string representation of an integer value.

StringToFloat Convert a string into a floating point value

StringToHex Convert a string representing a hex string into an integer.

StringToInt Converts a string into an integer value.

Matlab Interface Classes

Mathworks MatLab and Simulink are powerful analysis and simulation tools. Malibu provides tools to remotely control
instances of MatLab, and to transfer data between a C++ application and the Matlab workspace at rates beyond 100 MB/s.

Malibu Library User's Manual 51

Method Description

MatlabMatrix Manipulate Matlab-compatible vectors of various types within C++ programs

MatlabFile Read or write vectors from standard Matlab .m files.

MatlabEngine Launch or close a Matlab instance. Allows use of Matlab as a C++ coprocessor.

Data Set Classes

Generally, data flow between target hardware and host system memory is organized as interleaved data from all enabled
channels in module-specific binary format. This is done to maintain the highest data flow rates. Malibu's DataSet objects
provide channelized access to interleaved data stored in standard disk files, to simplify post-analysis or pre-calculation of
output data.

Method Description

DataSet Channelized read/write methods on data set containing interleaved data in binary file format.
Automatic translation between native format data and integer, floating point or u/A-law
compessed data sets.

FileDataSet Data set access to interleaved data stored in disk file.

PacketFileDataSet Similar to FileDataSet, but specialized to accommodate buffer-prefaced data buffers within a
disk file. This packet buffers are produced by all PMC/XMC modules, the M6713, P25M and
and other baseboards.

RamDataSet Similar to FileDataSet, but specialized to accommodate interleaved data stored in a RAM
buffer.

Malibu Library User's Manual 52

Chapter 7. The Malibu Hardware Library

The Malibu hardware library Hardware_Mb.lib contains software interfaces and support classes for the generic hardware
devices used on Innovative baseboards. It includes provision for COFF file parsing and downloads, HPI DSP bus access,
message I/O structures, XSVF parsing and loading, FPGA loading via SelectMap, access to baseboard calibration ROM and
debug scripts.

Target I/O Streaming Classes

Data I/O between the target and the host is a major component of many applications. It is also one of the most complicated
tasks, involving interrupts on both target and host, busmastering, DMA, data buffering and buffer management, among other
issues. In Malibu, each particular style of I/O is packaged into a separate Stream class. When associated with a baseboard
class, the stream can provide the methods and events needed for efficient I/O to and from the target.

Before being used, a stream must be attached to a baseboard with the ConnectTo() method. Only if this method of
streaming is supported on a baseboard will the ConnectTo() compile. The DisconnectFrom() method removes the
connection.

A limitation on all busmaster communications that streams commonly used is that single packet size is limited to what can fit
into the allocated busmaster region. This region must be reserved for use by the Innovative ReserveMemDsp applet and is
subsequently allocated by the device driver at O.S. startup. The maximum size this buffer can be sized to can depend on the
system BIOS or Windows. In any event, it is often relatively-easy to send large amounts of data in multiple packets rather
than depend on a single transfer.

Stream Usage

PacketStream Packet based streaming, with data from separate data sources in individual packets.

TiBusmasterStream Packet based streaming from TI CPUs with PCI bus-mastering.

BlockSteam Matador style streaming, with no header and interleaved channels.

Innovative::PacketStream provides packet based streaming to the newer PMC cards and the M6713 baseboard.
Packets may be of different sizes, the size being inserted into the packet header. A baseboard may have a number of
'peripheral' devices that can source or consume data. For instance, a TX PMC module features four D/A channels addressed
as two device pairs. Each is accessible via Peripheral ID #0 and #1. Data is marked by a Peripheral ID field to allow routing
according to the source or destination of the data.

By contrast, Innovative::BlockStream on the Toro, Conejo and Delfin baseboards are designed for analog
processing and produce more typical data streams containing interleaved data from all enabled analog channels. All blocks
are of uniform size, and all data is of a uniform format for that run.

The stream Innovative::TiBusmasterStream supports both command packets and buffers directly to the TI C64x
CPU. There are no headers, and data packets may be of any size.

Malibu Library User's Manual 53

Interface Classes

Interface Object Subsystem

IUsesOnboardCpu CPU related functions such as Booting and COFF Downloading.

IUsesVirtexFpgaLoader User Logic Loading.

IUsesVirtexJtagLoader Logic EEPROM programming via JTAG scan path.

PacketDeviceMap Packet-based, bus mastering transfers. Used by all PMC modules and M6713

IUsesCalibration Storage/retrieval of analog cal coefficients in PMC EEPROM

IUsesFpgaLogicVersionInfo Standardized logic version information retreival

The Interface Object classes include the methods to perform the subsystem tasks, and they also include the events that can be
hooked by the application in the subsystem. For example, in the COFF loading there are events that allow the intercepting of
error and status messages produced during the load, and a progress event that can be used to provide user feedback during the
process.

Timebase Classes

Class Description

Ics8442

Ics8402

Phase-lock loop timebases for high-speed clock generation

Certain baseboards have high precision timebases on board. These classes are available in the baseboard object to program
these timers.

Hardware Support Classes

Additional support classes.

Class Description

ClockBase Clock settings management class

GcScripter Script interpreter for GrayChip devices

Scripter Add scripting to a class

HpiEngine Memory-region access object

PmcIdrom Base class for Flash ROM Block

ZbtRam Class to interact with ZBT RAM on a device

Malibu Library User's Manual 54

Hardware Register Classes

In interacting with the memory mapped registers of the hardware, some support classes for the different characteristics of a
register were created. Usually these will only be used inside of a baseboard support class.

Class Description

AddressingSpace Memory-region access object

ReadOnlyRegister Read-only register access

ReadOnlyRegisterBit Read-only register bit access

ReadOnlyRegisterBitGroup Register field access

Register Read/write register access

RegisterArray Register array access

RegisterBit Register bit access

RegisterBitGroup Register field access

ShadowRegister Control a memory location as a register with a shadow showing
the current state

CachedShadowRegister Deferred-update ShadowRegister object

Malibu Library User's Manual 55

Chapter 8. The Malibu Analysis Library

The Malibu analysis library Utility_Mb.lib provides classes that perform common signal processing functions such as
filters and FFTs, logging and playback of waveforms and other classes needed in data acquisition and control applications.
These routines make use of the Intel Performance Primitives libraries in order to achieve optimal performance.
Consequently, use of the classes within this library create a runtime dependency on the IPP shared object codes, which are
packaged as DLLs under Windows and .sa files under Linux.

If this dependency is problematic in your application, do not use any of the classes within this library, exclude #include
<Analysis_Mb.h> from your application source and avoid calling the Init::UsePerformanceMemoryFunctions()
which forces binding to the IPP libraries.

Statistical Analysis Classes

The analysis classes provide access to common DSP algorithms and analysis functions. Most of the components are MMX
and SIMD optimized code from the Intel libraries that offer the highest performance.

Class Description Application

Stats Statistics: Min, max, mean, std dev, dynamic range,
integrals

Signal analysis

AdcStats A/D statistics: Signal-Noise, SINAD, total-harmonic
distortion, harmonic analysis

User application data pump. Channelized data
available on events.

A/D and D/A characterization

Signal Processing Classes

Common signal processing operations such as FFTs, and filters are implemented as components within the Malibu package.
These operations have been implemented using the Intel IPP library for performance. The IPP library uses the full features of
Pentium processors to make analysis even more efficient.

Class Description Application

Malibu Library User's Manual 56

BandPass Band-pass filter, variable # taps, automatic digital filter
designer.

BandStop Band-stop filter, variable # taps, automatic digital filter
designer.

Highpass High-pass filter, variable # taps, automatic digital filter
designer

Lowpass Low-pass filter, variable # taps, automatic digital filter
designer

Fir Generic FIR filter. Variable # taps

Iir Generic IIR filter. Variable # taps

Waveform filtering. >100 MTaps/sec on
Pentium IV 3GHz

Fourier Time to frequency domain transformations, adjustable
size, numerous window functions.

InverseFourier Frequency to time domain transformations, adjustable
size.

>100,000 1K-point transforms/sec on Pentium
IV 3 GHz

The Fourier class may be used to convert signals between the frequency and time domains. Properties control the number
of points in the FFT frame, from 128 to 512K points. The InverseFourier class performs inverse transformations (from
frequency to time domain). A property is available to enable windowing of time-series input data prior to transformation
using common windows such as Hanning and Blackman.

The LowPass, HighPass, BandPass, BandStop, IIir and Fir classes perform filtering operations on data blocks.
Properties control the number of filter taps to be used to implement the filter, the cutoff frequencies and the sampling rate.
The Filter() method performs a convolution on a data block using filter coefficients, which are automatically calculated
using the specified properties. As with the FFT component, a property is available to enable windowing of time-series input
data prior to transformation using common windows such as Hanning and Blackman.

Signal Generation Classes

The SignalGen class generates contiguous sinusoidal, triangular or square waves in block format suitable for consumption
by other processing functions, or to be sent to target hardware as block data. A single SignalGen object can provide blocks
of data to multiple independent streaming output channels within an application, if so desired.

The GaussGen class generates random noise, distributed in a Gaussian distribution about a mean value. This mean value and
its standard deviation can be changed to suit the needs of the application.

The RandomGen class also generates a random noise source, but with a different distribution. This noise distribution is flat, a
uniform distribution between an upper and lower boundary.

Digital Signal Processing Classes

Class Description Application

CommonGen Base class for all signal generators. Allows creation of user-defined filters

Malibu Library User's Manual 57

GaussGen User-adjustable Gaussian noise source

SignalGen User-adjustable arbitrary signal source. Sin, Cos,

Triangle, Square waves

RandomGen User adjustable random noise source

Frequency response testing, vibration

Malibu Library User's Manual 58

Chapter 9. The Malibu PCI Library

The Malibu ethernet library Pci_Mb.lib provides support for baseboards that use the PCI bus and busmastering as the
primary means of communication between target and host.

PCI Baseboard Classes

A major part of the purpose of the Malibu library is to provide easy interaction with Innovative hardware products. These
products all require means of loading logic, software to CPUs present, configuration and control, and providing the transfer
of data and commands to and from the board.

In the Malibu library, most of the details of these procedures is contained inside the library so that the application writer does
not need to concern themselves with low level details. This means that it is possible for boards with different means of
performing a function can be used in similar or identical ways by an application, simplifying the learning curve for the user.

Baseboards and PMC Modules
The DSP baseboard components listed below encapsulate the capabilities of the baseboard hardware. For more information
about any baseboard class, see the hardware manual for the baseboard. It includes a chapter giving an overview of the object.

Object Product

Matador Toro, Delfin, Conejo, Lobo, Oruga DSP baseboards

C64xDsp TMS320C6416 DSP hosted on Quadia and Quixote baseboards

M6713 M6713 PCI DSP baseboard

Quadia Quadia and Duet baseboard features (not including the four C64x CPUs).

Quixote Quixote baseboard features (not including the one C64x CPU).

Baseboard objects are created in a one-to-one relationship with hardware. To associate a baseboard with a hardware device,
each device in a system is given a unique index, known as the target number. These indexes are unique for each type of
baseboard. Once the target number has been assigned, the baseboard can be attached to the hardware with an Open()
command. If the target is not present, this method will throw an exception. Otherwise, the baseboard is ready for use. To
detach from hardware, use the Close() method.

Baseboard objects also have methods to allow access to the features of the board. Some of these are unique to a particular
baseboard, and are implemented as simple methods. Other board features are more complex or are shared on several
baseboards. These are called subsystems. Logic loading and COFF file loading are examples of subsystems.

Malibu Library User's Manual 59

Subsystems are implemented as an interface class that can be shared from baseboard to baseboard, even if the
implementation differs internally. Each baseboard can provide the subsystems that it requires. For example, the Quadia
baseboard class has interfaces to load each of the twin user-programmable Virtex II FPGAs.

PMC Module Classes

The PMC Module classes provide application access to Innovative's PMC module family. Like the regular baseboards, these
modules all require means of loading logic, configuration and control, and providing the transfer of data and commands to
and from the board. For more information about any PMC module class, see the hardware manual for the module. It includes
a chapter giving an overview of the object and a detailed annotated example.

Object Product

Uwb Ultra wide-band analog capture

Sio High-speed serial I/O

Tx High-speed analog waveform playback and streaming

DigitalReceiver Wide-band analog capture and hardware down-conversion

XMC Module Classes

The XMC Module classes provide application access to Innovative's X-series module family. Like the regular baseboards,
these modules all require means of loading logic, configuration and control, and providing the transfer of data and commands
to and from the board. For more information about any XMC module class, see the hardware manual for the module. It
includes a chapter giving an overview of the object and a detailed annotated example.

Object Product

X5-400M 400 MHz A/D and D/A

X3-10M Eight-channel, 10 MHz A/D

X3-SD Sixteen-channel, sigma-delta A/D

X3-SDF Four-channel, high-speed, instrumentation-grade sigma-delta A/D

X3-Servo Twelve-channel, high-speed, instrumentation-grade successive-approximation A/D for low-latency servo
applications

Malibu Library User's Manual 60

Malibu Library User's Manual 61

Chapter 10. The Malibu Ethernet Library

The Malibu ethernet library Ethernet_Mb.lib provides support for baseboards that use ethernet as the primary means of
communication between target and host.

Baseboard Classes

At present, only a single baseboard uses the Ethernet interface to communicate. For more information about the baseboard
class, see the hardware manual for the baseboard. It includes a chapter giving an overview of the object.

Object Product

Sbc6713e Supports the SBC6713e ethernet single board processor.

Malibu Library User's Manual 62

Chapter 11. Packet Polling Library

The packet polling classes in Malibu library enables packetized data transfers between user applications and Innovative
hardware without interrupt signaling. The PacketPollMgr class is the primary application interfacing class supplying this
capability. Two sub-classes of PacketPollThread class perform work of moving data packets. Whenever a data packet
is received or is required for transfer, these I/O threads signals the application by triggering an event of the type
PacketPollDataEvent class. Data packets are buffered in the PacketPollQueue class.

Source Files: PacketPoll_Mb.h and PacketPoll_Mb.cpp.

PacketPollMgr Class

The PacketPollMgr class encapsulates all packet polling functionalities. Object of this class encapsulate all
functionalities required to perform polling operations.

Con/Destructor

On creatation, thePacketPollMgr class constructor expects a reference to the base board class, such as X3Servo.

 PacketPollMgr(X3Servo & board);
 ~PacketPollMgr();

Events

To interact with application level, PacketPollMgr exposes two events. These events are triggered at each iteration of
the polling threads. Applications must register event handling functions in order to extract or provide new data packets to
PacketPollMgr for processing.

 OpenWire::EventHandler<PacketPollDataEvent> OnDataRequired;
 OpenWire::EventHandler<PacketPollDataEvent> OnDataAvailable;

Interfaces

Start()/Stop()
To start or stop the polling operation, application calls the start() or stop() functions. The start() function need to know the
size of packets for transmission. Packets must be fix sized.

 void Start(ii32 pktSize);
 void Stop();

Malibu Library User's Manual 63

Send()/Recv()
To add a packet to the send queue, call Send(). To extract received packet, call Recv(). It is recommended that these calls
be made in the registered envent handlers for optimum performance.

 bool Send(Buffer & packet);
 bool Recv(Buffer & packet);

SetFifoDacDelay()
This function set the amount of processing delay offset between ADC and DAC, in nanoseconds. This time should
correspond to the turn around time of the incoming samples.

 ii32 SetFifoDacDelay(ii32 ns);

PacketPollDataThread Class

PacketPollDataThread class is a sub-class of PacketPollThread class. Each instance of this class create and
manage a high priority thread. The thread begin and end execution when start() and end() functions are called. For more
detail, see documentation on StartStopThread class. With each iteration of the thread's execution loop , one data
packet is received and send between the DSP board and a host-side software queue.

PacketPollDataEvent Class

With each data packet received or required for transfer, these I/O threads classes signals the application by triggering an
event of the type PacketPollDataEvent class. The application should register two event handling functions with this
class in order to process the requests.

 // Register packet handlers with Poll Manager
 PollMgr.OnDataRequired.SetEvent(this, &ApplicationIo::HandlePollDataRequired);
 PollMgr.OnDataRequired.Unsynchronize();
 PollMgr.OnDataAvailable.SetEvent(this, &ApplicationIo::HandlePollDataAvailable);
 PollMgr.OnDataAvailable.Unsynchronize();

PacketPollDataEvent class has a pointer to the PacketPollMgr class. The application can access / transfer
pending data packet by calling the Recv()/Send() via this pointer.

//---
// ApplicationIo::HandlePollDataRequired() - Handle new data requests
//---
void ApplicationIo::HandlePollDataRequired(Innovative::PacketPollDataEvent & Event)
{
 //pull packet from queue
 if (pollQ.Pop(TxPacket))
 {
 if (Event.Sender->Send(TxPacket))
 {
 ...
 }
 }
}

Malibu Library User's Manual 64

//---
// ApplicationIo::HandlePollDataAvailable() - Handle new data from PollMgr
//---
void ApplicationIo::HandlePollDataAvailable(Innovative::PacketPollDataEvent & Event)
{
 if (Event.Sender->Recv(RxPacket))

{
…
}

}

PacketPollQueue Class

This class provide data storage and retrival in FIFO order. It stores data packets of class Buffer in a thread safe queue of
class ThreadSafeQueue. The capacity of the queue can be adjusted or retrieved by calling QueueCapacity().

 void QueueCapacity(size_t cap_in_blocks);
 size_t QueueCapacity() const;

Packets can be added or removed rom the queue by calling Push() or Pop(). True is return if these operations succeed; false
otherwise.

 bool Push(Buffer & packet);
 bool Pop(Buffer & packet);

Current queue depth, i.e. the number of paackets kept in the queue, is returned by calling Depth().

 size_t Depth();

Call Clear() to remove all packets from the queue and reset the queue depth to zero.

 void Clear();

Malibu Library User's Manual 65

Chapter 12. Writing Custom Applications

Most scientific and engineering applications require the acquisition and storage of data for analysis after the fact. Even in
cases where most data analysis is done in place, there is usually a requirement that some data be saved to monitor the system.
In many cases a pure data that does no immediate processing is the most common application.

The X6 XMC card family contains high bandwidth analog capture and playback modules with an advanced architecture that
provides ultimate flexibility and speed for the most advanced hardware-assisted signal processing and ultrasonic signal
capture. The maximum data rate from these module are often in the hundreds of MSPS. This means that a simple logger that
saves all of the data to the host disk is not feasible using standard operating system disk I/O calls, as the slower disk writes
eventually cause overflow and data loss in the streaming system.

Some modules support decimation so that long duration samples can be taken without data. Also quick snapshots of analog
data can be taken without loss as long as the amount of data is less than the net capacity of system memory and what the
baseboard holds. The example program provided for nearly all cards is this limited capacity data logger, called the Snap
example

The Snap Example

The Snap example in each software distribution demonstrates this logging functionality. It consists of a host program in
Windows, which works with the logic provided on the board's flash to stream data to the host. It uses the Innovative Malibu
software libraries to accomplish the tasks.

Tools Required

In general, writing applications for the XMC requires the development of host program. This requires a development
environment, a debugger, and a set of support libraries from Innovative.

Table 4. Development Tools for the Windows Snap Example

Processor Development Environment Innovative
Toolset

Project Directory

Host PC Embarcadero Developers Studio
C++

Microsoft Visual Studio

QtCreator

Common Host Code

Malibu Examples\Snap\Bcb11

Examples\Snap\VC9

Examples\Snap\Qt

Examples\Snap\Common

On the host side, the Malibu library is provided in source form, plus pre-compiled Microsoft, Borland or GCC libraries. The
application code that implements the entirety of the board-specific functionality of example is factored into the

Malibu Library User's Manual 66

ApplicationIo.cpp/h unit. All user interface aspects of the program are completely independent from the code in
ApplicationIo, which contains code portable to any compilation environment (i.e., it is common code). While each
compiler implements the GUI differently, each version of the example project uses the same code file to interact with the
hardware and acquire data.

Program Design

The Snap example is designed to allow repeated data reception operations on command from the host. As mentioned earlier,
received data can be saved as Host disk files. When using modest sample rates, data can be logged to standard disk files.
However, full bandwidth storage of multiple A/D channels can require up more capacity, so a dedicated RAID0 drive array
for data storage may be required, or data may have to be cached online and stored after stopping data flow. The example
application software is written to perform minimal processing of received data and is a suitable template for high-bandwidth
applications.

The example uses various configuration commands to prepare the module for data flow. Parametric information is obtained
from a Host GUI application, but the code is written to be GUI-agnostic. All board-specific I/O is performed within the
ApplicationIo.cpp/.h unit. Data is transferred from the module to the Host as packets of Buffer class objects.

The Host Application

The picture to the right shows the main window of an X6 example (for the X6-RX). This form is from the designer of the
Embarcadero CBuilder -version of the example, but the Microsoft and Qt versions are similar. It shows the layout of the
controls of the User Interface.

User Interface

This application has five tabs. Each tab has its own significance and usage, though few are interrelated. All these tabs share a
common area, which displays messages and feedback throughout the operation of the program.

Configure Tab
As soon as the application is launched, the Configure tab is displayed. In this tab, a combo box is available to allow the
selection of the device from those present in the system. All XMC family devices of whatever type share a sequence of
target number identifiers. The first board found is Target 0, the second Target 1, and so on.

Click the Open button to open the driver. To change targets, click the Close button to close the driver, select the number of the
desired target using the Target # combo box, then click Open to open communications with the specified target module.
The order of the targets is determined by the location in the PCI bus, so it will remain unchanged from run to run unless the
board is moved to a different slot or another target is installed.

Malibu Library User's Manual 67

Setup Tab
This tab has a set of controls that hold the parameters for transmission. These settings are delivered to the target and
configure the target accordingly. This tab has several sections.

Malibu Library User's Manual 68

The controls in the Clock group offer configurations and routing of the clock. The clock for the FPGA can come from an
external clock (EXT) or from an onboard phase-locked loop (INT). The selection can be made at upper right corner of this
section. The output sample rate of the selected clock source is specified in the Output field in MHz.

The controls in the Reference group specify the source and frequency of the reference clock. The behavior of the reference
clock and the meaning of these controls are a function specified Clock Source specified above. If the clock source is internal,
the Reference controls specify the source and rate of the reference clock routed to the onboard PLL. If the clock source is
external, the Reference controls specify the source and rate of the sample clock, bypassing the PLL. In this mode, the ratio of
the Reference Frequency/Clock Frequency is used to control an onboard clock divider, supporting sampling at integer
submultiple rates of the reference clock. The table below summarizes the behavior.

The physical line driving the external clock/reference signal has a multiplexer on it that can select one of two sources for the
signal. One is the front panel input, the second choice is to use the P16 connector clock as the source. This signal is driven
by Innovative's SBC-Comex product line.

Reference
Source

Clock
Source

PLL Reference Sample Clock Sample Rate

EXT EXT N/A EXT CLK External rate /
(REF_FREQ/CLK_FREQ)

INT EXT N/A Onboard Oscillator 100 MHz /
(REF_FREQ/CLK_FREQ)

EXT INT EXT CLK PLL CLK_FREQ

INT INT Onboard Oscillator PLL CLK_FREQ

Malibu Library User's Manual 69

The Communications section controls the Alert features and the input data packets size. Checking the box next to an alert
will allow the logic to generate an alert if that condition occurs during data streaming. This alert can then be left in the data
stream, or extracted to notify the application. The Velo Packet Size edit control specifies the size of the Velocia packets that
the module will use to

In the Channels section, we can specify number of channels to activate. Selecting a channel will flow data from that data
source during streaming.

The Trigger group contains controls that affect the way that I/O starts and stops. Triggers act as a gate for I/O - no data flows
until a trigger has been received. Triggers may be initiated via software or hardware, depending on the Trigger | Source
control. If software, the application program must issue a command to initiate data flow. If hardware, a signal applied to the
external trigger connector controls data flow. The external trigger line may also be routed from one of two sources, either the
front panel connector or the P16 clock signal line.

Triggers are modal depending on the Trigger | Mode control. In Unframed mode, triggers are level sensitive and data flow
proceeds while the trigger is in the high (active) state and stops while the trigger is in the low (inactive) state. This mode is
appropriate for conventional data acquisition applications. In Framed mode, triggers can be selected to be edge sensitive or
level sensitive on the X6. Upon detection of each trigger, Trigger | Frame | Count samples are acquired from all active
channels, then acquisition terminates until the next trigger edge is detected. This mode is well-suited for applications such as
spectral analysis using fixed input buffers submitted to FFTs.

The module supports one or more test modes for module debugging and system test. The Test Counter Enable is used to turn
on test mode and substitutes a ramp signal with channel number in the upper byte of the data. The Decimation section sets up
the decimation logic to discard data, reducing the incoming data rate.

Stream Tab
The two buttons in the button bar start and stop data streaming. Press the running man button to start streaming data. Press
the stop button to stop streaming, unless the stream has stopped itself. When streaming, the status bar data is collected and
displayed. This includes a count of the data samples received, the data rate, the measured temperature of the board logic, and
the PLL locked indicator bit value.

Data is logged to an intermediate file that holds the Velocia buffers with the Vita Buffer data. This can be read by Binview in
native mode for analysis. The Post Processing button will extract the data from the Intermediate file and convert it into X5
compatible data files for use with older versions if desired.

The Auto Stop option determines if data streaming stops after collecting the given number of points (a Snapshot of data) or
continues to stream forever until manually stopped.

Malibu Library User's Manual 70

Host Side Program Organization

The Malibu library is designed to be built in numerous different host environments: Borland/CodeGear/Embarcadero
CBuilder, Microsoft Visual Studio under Windows or QtCreator under Windows/Linux. Because the library is built using
and identical source code base in all environments, the code that interacts with Malibu is identical regardless of the toolchain
used. Within examples, the portion of the code which interacts with Malibu is factored into a class, ApplicationIo in the files
ApplicationIo.cpp and .h. This class acts identically on all frameworks and OS platforms.

It is very important to realize that the most expedient method to create a custom application, regardless of the framework type
used (.NET, VCL, Qt, wxWidgets or console mode), is to incorporate the ApplicationIo class in its entirety directly into your
custom app. ApplicationIo contains only portable code, without any framework dependencies whatsoever. It contains all of
the essential hardware initialization code, event handlers, etc to support efficient communications with the board. You'll
likely need all of the features of ApplicationIo in your application - so why reinvent the wheel?

Many users are initially unclear on how ApplicationIo can remain agnostic to the framework. This is accomplished by
factoring all functions used to relay information between framework-specific code and the ApplicationIo into a small separate
class called UserInterface within the supplied examples.

The concrete UserInterface object derives from the pure abstract IUserInterface base class. IUserInterface simply specifies
the functions that must be supplied by a user application to provide a bridge to the stock features of the ApplicationIo object.
Your application must create a UserInterface class and pass it to the constructor of the ApplicationIo object, but your
implementation of the IUserInterface methods may degenerate to trivial no-ops if desired.

Malibu Library User's Manual 71

The Main form of the application creates an ApplicationIo to perform the work of the example. The UI can call the methods
of the ApplicationIo to perform the work when, for example, a button is pressed or a control changed.

Sometimes, however, the ApplicationIo object needs to 'call back into' the UI. But since the code here is common, it can't use
a pointer to the main window or form, as this would make ApplicationIo have to know details of Borland or the VC
environment in use.

The standard solution to decouple the ApplicationIo from the form is to use an Interface class to hide the implementation. An
interface class is an abstract class that defines a set of methods that can be called by a client class (here, ApplicationIo). The
other class produces an implementation of the Interface by either multiple inheriting from the interface, or by creating a
separate helper class object that derives from the interface. In either case the implementing class forwards the call to the UI
form class to perform the action. ApplicationIo only has to know how to deal with a pointer to a class that implements the
interface, and all UI dependencies are hidden.

The predefined IUserInterface interface class is defined in ApplicationIo.h. The constructor of ApplicationIo requires a
pointer to the interface, which is saved and used to perform the actual updates to the UI inside of ApplicationIo's methods.

ApplicationIo

Initialization
The main form creates an ApplicationIo object in its constructor. The object creates a number of Malibu objects at once as
can be seen from this detail from the header ApplicationIo.h.

 ModuleIo Module;
 IUserInterface * UI;
 Innovative::VitaPacketStream Stream;
 Innovative::VitaPacketParser Vpp;
 Innovative::TriggerManager Trig;
 Innovative::SoftwareTimer Timer;
 MultiLoggerManager MLM;
 Innovative::StopWatch RunTimeSW;
 Innovative::DataLogger IntermediateLogr;
 Innovative::DataPlayer IntermediatePlayer;

 // App State variables
 bool Opened;
 bool StreamConnected;
 bool Stopped;
 // App Status variables
 double FBlockRate;
 ii64 FWordCount;
 int SamplesPerWord;
 ii64 WordsToLog;

 Innovative::AveragedRate Time;
 Innovative::AveragedRate BytesPerBlock;

...

In Malibu, objects are defined to represent units of hardware as well as software units. The ModuleIo object represents the
board. The VitaPacketStream object encapsulates supported, board-specific operations related to I/O Streaming. The
VitaPacketParser object encapsulates capabilities to extract VITA49 packets from the native Velocia packets supplied by the
board during streaming. The MultiLoggerManager object provides file storage for each peripheral type parsed from the
stream by the parser, facilitating analysis of data received.

Malibu Library User's Manual 72

The ApplicationIo object derives from type FiclIo. FICL is an abbreviation for Forth-Inspired Control Language. A simple
Forth interpreter is available within the module object which can be used as a simple scripting language, for the purposes of
performing hardware initialization during FPGA firmware development.

When the Open button is pressed, the ApplicationIo object begins the process of opening the board driver and setting up the
board for a run. The first thing done is to link Malibu software events to callback functions in the applications by setting the
handler functions.

Malibu uses events to allow functions to be 'plugged into' the library to be called at certain times or in response to certain
events detected. Events allow a tight integration between an application and the library:

//
// Configure Trigger Manager Event Handlers
Trig.OnDisableTrigger.SetEvent(this, &ApplicationIo::HandleDisableTrigger);
Trig.OnExternalTrigger.SetEvent(this, &ApplicationIo::HandleExternalTrigger);
Trig.OnSoftwareTrigger.SetEvent(this, &ApplicationIo::HandleSoftwareTrigger);

This code attaches event handlers associated with the various trigger conditions. For example, the OnDisableTrigger event
fires when triggering is disabled. When Malibu detects that condition, it calls the ApplicationIo::HandleDisableTrigger
method, providing a means of user-specific processing under that condition.

In a similar manner, the events hooked below are called at strategic times during data streaming:

//
// Configure Module Event Handlers
Module().OnBeforeStreamStart.SetEvent(this, &ApplicationIo::HandleBeforeStreamStart);
Module().OnBeforeStreamStart.Synchronize();
Module().OnAfterStreamStart.SetEvent(this, &ApplicationIo::HandleAfterStreamStart);
Module().OnAfterStreamStart.Synchronize();
Module().OnAfterStreamStop.SetEvent(this, &ApplicationIo::HandleAfterStreamStop);
Module().OnAfterStreamStop.Synchronize();

HandleBeforeStreamStart, HandleAfterStreamStart and HandleAfterStreamStop handle events issued on before stream start,
after stream start and after stream stop respectively. These handlers could be designed to perform multiple tasks as event
occurs including displaying messages for user. These events are tagged as Synchronized, so Malibu will marshal the
execution of the handlers for these events into the main thread context, allowing the handlers to perform user-interface
operations.

The hooking of alerts are factored into a method within the Module object, since different modules may provide different
alert capabilities.

// Alerts
Module.HookAlerts();

This code attaches alert processing event handlers to their corresponding events. Alerts are packets that the module generates
and sends to the Host as packets containing out-of-band information concerning the state of the module. For instance, if the
analog inputs were subjected to an input over-range, an alert packet would be sent to the Host, interspersed into the data
stream, indicating the condition. This information can be acted upon immediately, or simply logged along with analog data
for subsequent post-analysis.

//
// Configure Stream Event Handlers
Stream.OnVeloDataAvailable.SetEvent(this, &ApplicationIo::HandleDataAvailable);

Malibu Library User's Manual 73

Stream.DirectDataMode(false);

The Stream object manages communication between the application and a piece of hardware. Separating the I/O into a
separate class clarifies the distinction between an I/O protocol and the implementing hardware.

In Malibu, high rate data flow is controlled by one of a number of streaming classes. In this example we use the events of the
VitaPacketStream class to alert us when a packet arrives from the target. When a data packet is delivered by the data
streaming system, OnDataAvailable event will be issued to process the incoming data. This event is set to be handled by
HandleDataAvailable. After processing, the data will be discarded unless saved in the handler. Similarly,
“OnDataRequired” event is handled by HandleDataRequired. In such a handler, packets would be filled with data for output
to the baseboard. The Snap application does not generate output, so the HandleDataRequired event is left unhandled.

 Timer.OnElapsed.SetEvent(this, &ApplicationIo::HandleTimer);
 Timer.OnElapsed.Thunk();

In this example, a Malibu SoftwareTimer object has been added to the ApplicationIo class to provide periodic status updates
to the user interface. The handler above serves this purpose.

An event is not necessarily called in the same thread as the UI. If it is not, and if you want to call a UI function in the handler
you have to have the event synchronized with the UI thread. A call to Synchronize() directs the event to call the event
handler in the main UI thread context. This results in a slight performance penalty, but allows us to call UI methods in the
event handler freely. The Timer uses a similar synchronization method, Thunk(). Here the event is called in the main thread
context, but the issuing thread does not wait for the event to be handled before proceeding. This method is useful for
notification events.

Creating a hardware object does not attach it to the hardware. The object has to be explicitly opened. The Open() method of
the baseboard activates the board for use. It opens the device driver for the baseboard and allocates internal resources for
use. The next step is to call Reset() method which performs a board reset to put the board into a known good state. Note that
reset will stop all data streaming through the busmaster interface and it should be called when data taking has been halted.

The size of the busmaster region is changeable by using the BusMasterSize() property before opening the board. Larger
values provide more buffering during streaming, at the cost of slower allocation at startup time. Under Windows, up to 32
MB can generally be allocated in each stream direction. Under Linux, only up to 4 MB can generally be allocated in each
stream direction.

// Insure BM size is a multiple of four MB
const int Meg = 1024 * 1024;
const int BmSize = std::max(Settings.BusmasterSize/4, 1) * 4;
Module().IncomingBusMasterSize(BmSize * Meg);
Module().OutgoingBusMasterSize(1 * Meg);
Module().Target(Settings.Target);
//
// Open Device
try
 {
 Module().Open();

 std::stringstream msg;
 msg << "Bus master size: " << BmSize << " MB";
 Log(msg.str());
 }

catch(Innovative::MalibuException & e)
 {
 UI->Log("Module Device Open Failure:");

Malibu Library User's Manual 74

 UI->Log(e.what());
 return;
 }

catch(...)
 {
 UI->Log("Module Device Open Failure: Unknown Exception");
 Opened = false;
 return;
 }

Module().Reset();
UI->Log("Module Device opened successfully...");
Opened = true;

This code shows how to open the device for streaming. Each baseboard has a unique code given in a PC. For instance, if
there are three boards in a system, they will be targets 0, 1 and 2. The order of the targets is determined by the location in the
PCIe bus, so it will remain unchanged from run to run. Moving the board to a different PCIe slot may change the target
identification. The Led() property can be use to determine the association between a target number and the physical board in
a configuration.

 //
 // Connect Stream
 Stream.ConnectTo(&(Module.Ref()));
 StreamConnected = true;
 UI->Status("Stream Connected...");

Once the object is attached to actual physical device, the streaming controller associates with a baseboard by the
ConnectTo() method. The variable Module is a class, not a baseboard, to allow quicker porting. The Module.Ref() is the
admittedly ugly way of getting a pointer to the internal Module pointer for connection – Ref returns a reference, and the
address-of operator (&) turns this into a pointer.

Once connected, the object is able to call into the baseboard for board-specific operations during data streaming. If an objects
supports a stream type, this call will be implemented. Unsupported stream types will not compile.

Lastly we capture and display some information to the screen. This includes the logic version, PCI bus version information,
etc.

 DisplayLogicVersion();
}

Similarly, the Close() method closes the hardware. Inside this method, first we logically detach the streaming subsystem from
its associated baseboard using Disconnect() method. Malibu method Close() is then used to detach the module from the
hardware and release its resources.

//---
// ApplicationIo::Close() -- Close Hardware & set up callbacks
//---

void ApplicationIo::Close()
{
 if (!Opened)
 return;

 Stream.Disconnect();
 StreamConnected = false;

 Module().Close();
 Opened = false;

Malibu Library User's Manual 75

 UI->Log("Stream Disconnected...");
}

Starting Data flow
After downloading interface logic user can setup clocking and triggering options. The stream button then can be used to start
streaming and thus data flow.

//---
// ApplicationIo::StartStreaming() -- Initiate data flow
//---

void ApplicationIo::StartStreaming()
{
 if (!StreamConnected)
 {
 Log("Stream not connected! -- Open the boards");
 return;
 }

 //
 // Set up Parameters for Data Streaming
 // ...First have UI get settings into our settings store

UI->GetSettings();

Before we start streaming, all necessary parameters must be checked and loaded into option object. UI-> GetSettings() loads
the settings information from the UI controls into the Settings object within the ApplicationIo class.

if (Settings.SampleRate*1.e6 > Module().Input().Info().MaxRate())
 {
 Log("Sample rate too high.");
 StopStreaming();
 UI->AfterStreamAutoStop();
 return;
 }

We insure that the sample rate specified by the GUI is within the capabilities of the module.

if (Settings.Framed)
 {
 // Granularity is firmware limitation
 int framesize = Module().Input().Info().TriggerFrameGranularity();
 if (Settings.FrameSize % framesize)
 {
 std::stringstream msg;
 msg << "Error: Frame count must be a multiple of " << framesize;
 Log(msg.str());
 UI->AfterStreamAutoStop();
 return;
 }
 }

The module supports both framed and continuous triggering. In framed mode, each trigger event, whether external or
software initiated, results in the acquisition of a fixed number of samples. In continuous mode, data flow continues whenever
the trigger is active, and pauses while the trigger is inactive. The code above issues a warning if the trigger mode is framed
and ill-formed.

Malibu Library User's Manual 76

FWordCount = 0;
unsigned int SamplesPerWord = Module().Input().Info().SamplesPerWord();
WordsToLog = Settings.SamplesToLog / SamplesPerWord;

FBlockRate = 0;

The class variables above are used to maintain counts of blocks received, reception rate and whether the module is currently
triggered. These values are initialized prior to each streaming run.

// Disable triggers initially (done by library)
// Set external trigger?
Trig.AtConfigure();
//
// Channel Enables
Module().Input().ChannelDisableAll();
for (unsigned int i = 0; i < Module().Input().Channels(); ++i)
 {
 bool active = Settings.ActiveChannels[i] ? true : false;
 if (active==true)
 Module().Input().ChannelEnabled(i, true);
 }

The number of channels supported varies from board to board. The code uses standard functions like
Module().Input().Channels() to obtain the max channel count from a board. The ModuleIo also has a standard function
AnalogInChannels() that can be used before the board is opened and other methods are valid. The previous call to
GetSettings populated the Settings object with the number of channels to be enabled on this run. That information is used to
enable the required channels via the Channels object within the Module.Input() object.

The clock source is also programmed using the associated methods within the Module object:

// Route reference.
IX6ClockIo::IIReferenceSource ref[] = { IX6ClockIo::rsExternal, IX6ClockIo::rsInternal };
Module().Clock().Reference(ref[Settings.ReferenceClockSource]);
Module().Clock().ReferenceFrequency(Settings.ReferenceRate * 1e6);

// Route clock
IX6ClockIo::IIClockSource src[] = { IX6ClockIo::csExternal, IX6ClockIo::csInternal };
Module().Clock().Source(src[Settings.SampleClockSource]);
Module().Clock().Frequency(Settings.SampleRate * 1e6);

// Readback Frequency
double freq_actual = Module().Clock().FrequencyActual();
{
std::stringstream msg;
msg << "Actual PLL Frequency: " << freq_actual ;
Log(msg.str());
}

The size of the data packets sent from the module to the Host during streaming is programmable. This is helpful during
framed acquisition, since the packet size can be tailored to match a multiple of the frame size, providing application
notification on each acquired frame. In other applications, such as when an FFT is embedded within the FPGA, the packet
size can be programmed to match the processing block size from the algorithm within the FPGA.

//
// Always preconfigure
Stream.Preconfigure();

In order to support modes where the clock is not disturbed from run to run, some configuration (notably clock configuration)
is performed in a preconfiguration step. Here we call this step automatically to program the clock for the run.

Malibu Library User's Manual 77

//
// Velocia Packet Size
Module.SetInputPacketDataSize(Settings.PacketSize);

The I/O data can be replaced with FPGA-generated test data by enabling one of the test modes. This is useful when
developing custom logic. The code snippet below applies the test mode stored in the Settings.TestGenMode variable to the
hardware:

//
// Input Test Generator Setup
Module.SetTestConfiguration(Settings.TestCounterEnable, Settings.TestGenMode);

I/O samples can be decimated using a feature within the stock firmware. The code snippet below applies the specified
decimation factor to the hardware:

// Set Decimation Factor
int factor = Settings.DecimationEnable ? Settings.DecimationFactor : 0;
Module().Input().Decimation(factor);

The streamed data is logged without change to an intermediate file that can be analyzed with BinView. If this logging is
enabled, this starts the logger.

 if (Settings.IntermediateLogEnable)
 {
 IntermediateLogr.Start();
 }

The code below applies the user-specified trigger and and alert configuration settings to the hardware.

// Frame Triggering and other Trigger Config
Module().Input().Trigger().FramedMode(Settings.Framed);
Module().Input().Trigger().Edge(Settings.EdgeTrigger);
Module().Input().Trigger().FrameSize(Settings.FrameSize);

Module.ConfigureAlerts(Settings.AlertEnable);

Trig.AtStreamStart();

Samples will not be acquired until the channels are triggered. Triggering may be initiated by a software command or via an
external input signal to the Trigger SMA connector. The module supports framed triggering, where a single trigger enables
many data samples to be taken before rechecking the trigger. This code enables framed mode, or disables it depending on the
settings.

The Stream Start command applies all of the above configuration settings to the module, then enables PCI data flow. The
software timer is then started as well.

 //
 // Start Streaming
 Stream.Start();
 UI->Log("Stream Mode started");
 UI->Status("Stream Mode started");

 FTicks = 0;
 Timer.Enabled(true);
}

Malibu Library User's Manual 78

Handle Data Available
Once streaming is enabled and the module is triggered, data flow will commence. Samples will be accumulated into the
onboard FIFO, then they are bus-mastered to the Host PC into page-locked, driver-allocated memory following a two -word
header (data packets). Upon receipt of a data packet, Malibu signals the Stream.OnDataAvailable event. By hooking this
event, your application can perform processing on each acquired packet. Note, however, that this event is signaled from
within a background thread. So, you must not perform non-reentrant OS system calls (such as GUI updates) from within
your handler unless you marshal said processing into the foreground thread context. This marshaling behavior can be
automatically enabled by calling the event Thunked() or Synchronized() method, as was done in the Open() call earlier.

//---
// ApplicationIo::HandleDataAvailable() -- Handle received packet
//---

void ApplicationIo::HandleDataAvailable(VitaPacketStreamDataEvent & Event)
{
 if (Stopped)

return;

 VeloBuffer Packet;

 //
 // Extract the packet from the Incoming Queue...
 Event.Sender->Recv(Packet);

 FWordCount += Packet.SizeInInts();

 if (Settings.IntermediateLogEnable)
 if (FWordCount < WordsToLog)
 {
 IntermediateLogr.LogWithHeader(Packet);
 }

 IntegerDG Packet_DG(Packet);

 TallyBlock(Packet_DG.size()*sizeof(int));

 // Per block triggering actions
 Trig.AtBlockProcess(Packet_DG.size()*sizeof(int));
}

When the event is signaled, the data buffer must be copied from the system bus-master pool into an application buffer. The
preceding code copies the packet into the local Buffer called Packet. Since data sent from the hardware can be of arbitrary
type (integers, floats, or even a mix, depending on the board and the source), Buffer objects have no assumed data type and
have no functions to access the data in them. In the case of X6 series XMC modules, the data contained within the body of
the buffer is a list of VITA49 subpackets. These must be parsed and processed individually. This is done as a post-
processing step, since in normal cases the Binview application can display the contents of the data file without splitting it up.

As each Velocia packet is received and processed within the HandleDataAvailable method, the TallyBlock method is called.
This routine calculates and reports the data flow rate through the user interface.

//---
// ApplicationIo::TallyBlock() -- Finish processing of received packet
//---

void ApplicationIo::TallyBlock(size_t bytes)

Malibu Library User's Manual 79

{
 double Period = Time.Differential();
 double AvgBytes = BytesPerBlock.Process(static_cast<double>(bytes));
 if (Period)
 FBlockRate = AvgBytes / (Period*1.0e6);

...
}

In this example, each received packet is logged to a disk file. The packet header and the body are written into the file, which
implies that a post-analysis tool (such as BinView) must be used to parse packetized data from the file. Alternately, custom
applications may use the Innovative::VitaPacketFileDataSet object to conveniently extract channelized data from a Vita
formatted packet data source. Packets are processed until a specified amount of data is logged or the GUI Stop button is
pressed.

 //
 // Stop streaming when both Channels have passed their limit
 if (Settings.AutoStop && IsDataLoggingCompleted() && !Stopped)
 {
 // Stop counter and display it
 double elapsed = RunTimeSW.Stop();

 StopStreaming();
 Log("Stream Mode Stopped automatically");
 Log(std::string("Elasped (S): ") + FloatToString(elapsed));
 }
}

The Wave Example

The Wave example in the software distribution demonstrates output streaming. It will only be included if the board supports
streaming out to a DAC or similar device or devices.

In many ways the Wave example is similar to the Snap example. Differences are highlighted in this section.

User Interface

The Setup Tab
This tab, like that for the Snap application, allows the user to set up the configuration of the board before starting streaming.
An additional option on this tab is the Trigger Delay setting. This postpones the software start trigger for a given time to
allow the application ample time to stream data into the card before starting output.

Malibu Library User's Manual 80

The Waveform Tab
This tab collects the configuration of the output waveform into one area. If the FPGA Waveform is enabled, then it plays the
time of waveform selected. If a Sine wave is chosen, then the frequency value is used as the rate of the sine wave. In this
mode, no data is streamed by the software.

The software waveform generator uses the configuration selected to generate a single buffer's worth of data (indicated by the
size of the Velocia packet on the setup tab). All active channels are filled with the same data, unless single channel is
enabled. In that case the indicated channel of those active is filled with data, and the remainder are zero filled. Two tone
mode fills the buffer with the sum of two waves of the indicated frequencies.

Malibu Library User's Manual 81

Stream Tab
The Wave example supports the Preconfigure button. This allows the DAC timebase and calibration to occur once before
starting streaming, leaving the clock undisturbed during the run. If the Auto Preconfig checkbox is checked, then it acts as if
you pressed the Preconfigure button every run.

ApplicationIo

Stream Preconfigure
In order to support DAC systems that need calibration to tune the synchronization of their outputs, the channel selection and
timebase definition is moved out of the 'normal' location to a special preconfiguration stage. This stage must be manually
triggered by the application by calling Stream.Preconfigure(). The Wave example allows this by the additon of a
preconfiguration button. In addition, the Auto Preconfigure mode will automatically call Stream.Preconfigure() whenever the
stream is started.

All items that are initialized in the preconfiguration need to have their settings applied to the board object here. In general,
the items that need to be set up are the clock/timebase configuration and the DAC configuration, particularly the enables.

//---
// ApplicationIo::StreamPreconfigure()
//---

void ApplicationIo::StreamPreconfigure()
{
 Log("Preconfiguring Stream....");
 //
 // Make sure if Wave Generator is in single channel mode, we have a valid
 // active channel filled in
 if (Builder.Settings.SingleChannelMode)
 {
 int active_channels = 0;

Malibu Library User's Manual 82

 for (unsigned int i = 0; i < Settings.ActiveChannels.size(); ++i)
 if ((Settings.ActiveChannels[i] ? true : false))
 active_channels++;
 if (active_channels==3)
 active_channels = 4; // can't do a true 3 channel run, promote to 4.
 if (Builder.Settings.SingleChannelChannel >= active_channels)
 {
 Log("Error: Invalid Active Channel selected in Single Channel Mode");
 return;
 }
 }
 //
 // Set Channel Enables
 Module().Output().ChannelDisableAll();
 for (unsigned int i = 0; i < Module().Output().Channels(); ++i)
 {
 bool active = Settings.ActiveChannels[i] ? true : false;
 if (active==true)
 Module().Output().ChannelEnabled(i, true);
 }
 //
 // Clock Configuration
 // Route ext clock source
 IX6ClockIo::IIClockSelect cks[] = { IX6ClockIo::cslFrontPanel, IX6ClockIo::cslP16 };
 Module().Clock().ExternalClkSelect(cks[Settings.ExtClockSrcSelection]);
 // Route reference.
 IX6ClockIo::IIReferenceSource ref[] = { IX6ClockIo::rsExternal, IX6ClockIo::rsInternal };
 Module().Clock().Reference(ref[Settings.ReferenceClockSource]);
 Module().Clock().ReferenceFrequency(Settings.ReferenceRate * 1e6);
 // Route clock
 IX6ClockIo::IIClockSource src[] = { IX6ClockIo::csExternal, IX6ClockIo::csInternal };
 Module().Clock().Source(src[Settings.SampleClockSource]);
 Module().Clock().Frequency(Settings.SampleRate * 1e6);
 // Readback Frequency
 double freq_actual = Module().Clock().FrequencyActual();
 {
 std::stringstream msg;
 msg << "Actual PLL Frequency: " << freq_actual ;
 Log(msg.str());
 }

 Stream.Preconfigure();
}

Start Streaming
Setup of the stream is much like the Snap example. We have similar error checking code and rate guarding.

//---
// ApplicationIo::StartStreaming()
//---

void ApplicationIo::StartStreaming()
{
 //
 // Set up Parameters for Data Streaming
 // ...First have UI get settings into our settings store
 UI->GetSettings();

 // if auto-preconfiging, call preconfig here.
 if (Settings.AutoPreconfig)
 StreamPreconfigure();

Malibu Library User's Manual 83

 if (!FStreamConnected)
 {
 Log("Stream not connected! -- Open the boards");
 return false;
 }
 if (Settings.SampleRate*1.e6 > Module().Output().Info().MaxRate())
 {

 Log("Sample rate too high.");
 return false;
 }

The first difference is that we configure the Output() sub-object instead of Input(). The X6 Family divides the interface
functions for Input and Output devices into separate configuration sub-objects. This allows Input and Output to be
independently configured.

 if (Settings.Framed)
 {
 // Granularity is firmware limitation
 int framesize = Module().Output().Info().TriggerFrameGranularity();
 if (Settings.FrameSize % framesize)
 {
 std::stringstream msg;
 msg << "Error: Frame count must be a multiple of " << framesize;
 Log(msg.str());
 UI->AfterStreamStop();
 return false;
 }
 }

This code checks that the frame size is valid for the particular board being used. The granularity of the hardware frame size
control could be different on different cards. But as long as there is a standard means of getting the correct value, the example
can work for any card with the same code.

 // Configure Trigger Mananger
 Trig.DelayedTriggerPeriod(Settings.TriggerDelayPeriod);
 Trig.ExternalTrigger(Settings.ExternalTrigger);
 Trig.AtConfigure();

 FBlockCount = 0;
 FBlockRate = 0;
 //
 // Check Channel Enables
 int ActiveChannels = Module().Output().ActiveChannels();
 if (!ActiveChannels)
 {
 Log("Error: Must enable at least one channel");
 UI->AfterStreamStop();
 return false;
 }

The trigger manager is an object defined in the Application portion of Malibu to handle how and when the application
manages the software trigger during a run. Separating this kind of boilerplate code makes the ApplicationIo object cleaner,
and also makes finding out how the examples use the trigger easier to discover as well.

In this example, if using a software trigger the trigger will be applied after the number of seconds given by the Trigger Delay
period. This gives the streaming engine time to deliver substantial data to the card before activating the analog. If using an
external trigger, the software trigger will not be applied.

 //

Malibu Library User's Manual 84

 // Trigger Configuration
 // Frame Triggering
 Module().Output().Trigger().FramedMode((Settings.Framed)? true : false);
 Module().Output().Trigger().Edge((Settings.EdgeTrigger)? true : false);
 Module().Output().Trigger().FrameSize(Settings.FrameSize);
 // Route External Trigger source
 IX6IoDevice::AfeExtSyncOptions syncsel[] = { IX6IoDevice::essFrontPanel, IX6IoDevice::essP16 };
 Module().Output().Trigger().ExternalSyncSource(syncsel[Settings.ExtTriggerSrcSelection]);
 //
 // Velocia Packet Size
 Module.SetOutputPacketDataSize(Settings.PacketSize);
 //
 // Output Test Generator Setup
 Module.SetTestConfiguration(Settings.TestGenEnable, Settings.TestGenMode);
 Module().Output().TestFrequency(Settings.TestFrequencyMHz * 1e6);

 // Set Decimation Factor
 int factor = Settings.DecimationEnable ? Settings.DecimationFactor : 0;
 Module().Output().Decimation(factor);

This code sets up the trigger logic and routing, the packet size, decimation and the FPGA test generator. This last calls down
into the ModuleIo object to handle any board-specific customization.

 //
 // Configure Alert Enables
 Module.ConfigureAlerts(Settings.AlertEnable);

Alerts and starting the Stream are the same as in Input only mode. We call a board specific function to handle the details.

 // Disable prefill if in test mode
 Stream.PrefillPacketCount(Settings.TestGenEnable ? 0 : PrefillPacketCount);

 // Fill Waveform Buffer (if streaming)
 if (Settings.TestGenEnable == false)
 FillWaveformBuffer();

Like all of our Wave examples, streaming mode is handled by precalculating a wave pattern into a single buffer that is
retransmitted each time data is required. The calculation of the buffer itself is a little more involved, but in the end there is a
single Velo buffer that is repeatedly sent.

 Trig.AtStreamStart();

 // Start Streaming
 Stream.Start();
 Log("Stream Mode started");

 return true;
}

//---
// ApplicationIo::StopStreaming()
//---

void ApplicationIo::StopStreaming()
{
 if (!IsStreaming())
 return;

Malibu Library User's Manual 85

 if (!FStreamConnected)
 {
 Log("Stream not connected! -- Open the boards");
 return;
 }

 //
 // Stop Streaming
 Stream.Stop();

 Timer.Enabled(false);

 // Disable test generator
 if (Settings.TestGenEnable)
 Module.SetTestConfiguration(false, Settings.TestGenMode);

 Trig.AtStreamStop();
}

The stream stop process remains simple. The trigger manager, periodic timer, and data stream objects are all stopped. In
addition, the test generator is also turned off.

Data Required Event Handler
When the output stream needs additional data, the Data Required event is signalled. The Wave application uses this call to
send the template block to the output via the SendOneBlock() method.

//---
// ApplicationIo::HandleDataRequired()
//---

void ApplicationIo::HandleDataRequired(PacketStreamDataEvent & Event)
{
 SendOneBlock(Event.Sender);
}

//--
// ApplicationIo::SendOneBlock()
//--
const int HeaderTagValuePostPacketizer = 0x00000000;
const int HeaderTagValueOriginal = HeaderTagValuePostPacketizer;

void ApplicationIo::SendOneBlock(PacketStream * PS)
{
 ShortDG Packet_DG(WaveformPacket);

 // Calculate transfer rate in kB/s
 double Period = Time.Differential();
 if (Period)
 FBlockRate = Packet_DG.SizeInBytes() / (Period*1.0e6);

 //
 // No matter what channels are enabled, we have one packet type
 // to send here
 PS->Send(0, WaveformPacket);

 ++FBlockCount;
}

For speed, the packet is created on the first call only. After that, the same data wave is sent to all channels. Note that it is
allowed to send more than one output packet per notification. If no packets are sent, however, it is possible that further
notifications may stop until the application starts sending data again. This decoupling of notification from sending allows

Malibu Library User's Manual 86

different models of data generation to exist in Malibu. An application may send packets asynchronously and not handle
notifications at all.

FillWaveformBuffer()
The Application section of the Malibu library has a waveform generator that will fill a packet with an interleaved set of
channels. Sadly, this packet is not in the proper format for sending to the X6 cards, as it needs to be placed into the
appropriate number of Vita packets with proper Stream Ids. These packets then need to be inserted into a Velocia buffer to
send.

//--
// ApplicationIo::FillWaveformBuffer() -- Fill buffer with waveform data
//--

void ApplicationIo::FillWaveformBuffer()
{
 //
 // Builds a N channel buffer
 int channels = Module().Output().ActiveChannels();
 int bits = Module().Output().Info().Bits();
 int samples = static_cast<int>(Settings.PacketSize);

 // calculate scratch packet size in ints
 int scratch_pkt_size;
 if (bits <= 8)
 scratch_pkt_size = channels * Holding<char>(Settings.PacketSize);
 else if (bits <= 16)
 scratch_pkt_size = channels * Holding<short>(Settings.PacketSize);
 else
 scratch_pkt_size = channels * Settings.PacketSize;

 Innovative::Buffer ScratchPacket;
 ScratchPacket.Resize(scratch_pkt_size);

 Builder.SampleRate(Settings.SampleRate*1e6);
 Builder.Format(channels, bits, samples);
 Builder.BuildWave(ScratchPacket);

The first step is to generate the actual wave data. The approach taken is to have the original wave generator construct a
standard wave file in a scratch buffer, which we will then use to construct the correct Waveform packet. So we need to
calculate the size of the scratch buffer and load the generator parameters. Then the BuildWave() call constructs the wave in
the scratch buffer.

The second step is to copy the data from the scratch buffer into an array of Vita buffers. In this case we can do this as
integers, as the data format is the same for our one stream ID. The maximum size of a Vita packet is relatively small, so we
have to support paging into a number of them. We choose to make all the packets the same large size until the final one that
holds the remainder.

 //
 // We now have the data in a regular buffer. We need to copy it into
 // VITA buffers, and then those VITAs into the Waveform packet
 std::vector<Innovative::VitaBuffer> VitaQ;
 Innovative::UIntegerDG ScratchDG(ScratchPacket);
 //
 // Bust up the scratch buffer into VITA packets
 unsigned int words_remaining = ScratchPacket.SizeInInts();
 unsigned int offset = 0;
 while (words_remaining)

Malibu Library User's Manual 87

 {
 // calculate size of VITA packet
 const unsigned int MaxVitaSize = 0xF000; // Vita limited to 16 bit size

 unsigned int VP_size = std::min(MaxVitaSize, words_remaining);

 // Get a properly cleared/inited Vita Header
 VitaBuffer VBuf = Stream.NativeVitaBuffer(VP_size);
 Innovative::UIntegerDG VitaDG(VBuf);

The NativeVitaBuffer() function produces a buffer with a properly initialized header and trailer. This is particularly important
here since the trailer's padding field, if not correct, will not allow you to completely fill the packet using our Datagrams.

What is padding? Padding is a response to the need to be able to issue a Vita packet at any time. To be send across the
busmaster interface, the packet must have a size that is divisible by 4 (in 32 bit words). Yet we need to be able to issue a Vita
packet in cases, such as when a trigger lowers, that can happen at any time. If we hold the data, it will be issued at the wrong
time. To send it, we need to pad the packet to an even 128 bit boundary. The padding field is used to tell us which bytes in a
packet are invalid pad bytes instead of actual data. The datagrams check this field and reduce the size of the datagram to
avoid using this dead space for reading or writing.

 // Copy Data to Vita
 for (unsigned int idx=0; idx<VitaDG.size(); idx++)
 VitaDG[idx] = ScratchDG[offset + idx];

 // Init Vita Header
 VitaHeaderDatagram VitaH(VBuf);
 VitaH.StreamId(0);
 // fix up loop counters
 words_remaining -= VP_size;
 offset += VP_size;

 // save the buffer
 VitaQ.push_back(VBuf);
 }

Now that we have our array of Vita packets, we can copy them into a large Velo packet for sending. The VitaPacketPacker
object was made to facilitate this operation. You can set an output packet size, and then as you Pack the packets in, whenever
a new packet is filled, the OnDataAvailable() event is called for you to process the Velo packet before continuing. The
expectation is that you would call Send() in this function, but in this case we will tweak the settings to make sure we end up
with one buffer containing all the data.

The first step is to set the output size to be considerably larger than the total amount of data we have. Here I use a factor of 2.
The real need is to have enough room for the packet data and the 8 words of header/trailer data for each packet. The rough
doubling is good enough, since we only will have the one packet.

 //
 // Use a packer to load full VITA packets into a velo packet
 // ...Make the packer output size so big, we will not fill it before finishing
 VitaPacketPacker VPPk(scratch_pkt_size*2);
 VPPk.OnDataAvailable.SetEvent(this, &ApplicationIo::HandlePackedDataAvailable);

 // ...Shove in our VITA packets
 for (unsigned int i=0; i<VitaQ.size(); i++)
 {
 VPPk.Pack(VitaQ[i]);
 }

 VPPk.Flush(); // outputs the one waveform buffer into Waveform

Malibu Library User's Manual 88

At the end of the for loop above, all the data is present in the packer, with a large excess as well. The packer has the ability to
force the output of residual data by truncating the packet to exactly fit. This Flush() operation forces a final call to the
OnDataAvaliable event, which we have made sure is the only one we get.

Then we clean up and init the Waveform headers and we have a valid packet ready for sending when needed.

 // WaveformPacket is now correctly filled with data...

 ClearHeader(WaveformPacket);
 InitHeader(WaveformPacket); // make sure header packet size is valid...

}

This is the event handler for the Packer. In this case, we just do a simple assignment to save the data for later use. You can
also add the buffer to a data structure, or Send() it at this time if the application is designed for that kind of I/O.

//---
// ApplicationIo::HandlePackedDataAvailable() -- Packer Callback
//---

void ApplicationIo::HandlePackedDataAvailable(Innovative::VitaPacketPackerDataAvailable & event)
{
 WaveformPacket = event.Data;
}

Malibu Library User's Manual 89

Chapter 13. Malibu Buffer Classes

The Buffer Classes in Malibu have been designed for efficiency in the context of real-time data processing and flow
requirements. This document provides an overview of the design decisions made in their architecture.

Buffer Design Decisions

Previous versions of Malibu utilized specialized buffers for each type of data contained. The resulting class family design
suffered from a number of issues: The different classes were defined primarily by the type of the data contained in the
buffer, namely is it floating point data, integers, and so on. This was problematic for buffers that have no clearly defined
type, such as message packets, or if the data type is unknown.

The need to port Malibu to other platforms drove these problems to the surface. The old buffer classes relied on the Intel IPP
library, which is not available on all platforms. Since the IPP requirement had to be removed, this opened the door to
reworking the class family entirely.

Design Decision #1 – A “Typeless” Buffer class

In the present design, a buffer is a very simple thing. It is a package of data of undetermined type and format. Its primary
purpose is to act as a container to simplify movement of data between application and target hardware. From this
requirement, the natural element-size within a buffer is 32-bit integers because that is the smallest size of data that can be
bus-mastered on Innovative hardware. All buffers have a header block and a data block. The header information may be
ignored if the data streaming method used does not understand or make use of headers.

This reduces the number of buffer classes that our streaming classes needed to deal with down to one. Packet streams use the
header. The others ignore it. This class is called Innovative::Buffer.

Since a buffer is agnostic as to the size of the elements it holds, the only size method is called SizeInInts().

Design Decision #2 – Data Access Datagrams

Though Malibu uses typeless buffers, it is still important to be able to access the contents of the buffer simply and easily. To
accommodate this need, access to the data in buffers is performed by a wrapper class that is linked to the buffer just as access
is needed. In most applications, there are two kinds of buffers in general use:

• “Command” messages, in which the data is a set heterogeneous argument values

• “Data” packets where the all the data is likely to be of the same, if undetermined, type. For example one buffer
might be all 16 bit short data. Another might be floating point data.

Malibu Library User's Manual 90

The former type of message is supported by the IDatagram interface and the MessageDatagram class which derives from
it. The latter type is supported by the AccessDatagram class.

Since the AccessDatagram needs to support many different data types, it is implemented as a template class -
AccessDatagram<T>. It provides typed, random-access iterators, STL-like begin() and end() methods and array
operators. Each instance of a datagram provides a size() method that returns the size of the buffer in units of the data type
accessed. The template assures that any new operations will be available to all data types without cutting and pasting code.
This datagram has no dependencies on the IPP library.

An additional benefit of this design is that the template works on any data type as well as any structure that is defined by the
user. If the buffer contains an array of records, parsing the data is then very simple without adding any code to the library.

Design Decision #3 – Predefined Access Datagram Classes

While an access datagram can be simply built up for any data type, there are some data types that are commonly in use. For
simplicity's sake, numerous datagrams have been pre-defined in wrapper classes for these common types in
BufferDatagrams_Mb.cpp. Classes are provided for these data types:

Table 5. Basic Buffer Datagram Classes

Class Name Data Type

IntegerDG int

UIntegerDG unsigned int

FloatDG float

ComplexDG Complex

ShortDG short

CharDG char

Design Decision #4 – IPP Datagram Classes

Malibu uses the Intel Performance Primitives under operating systems that support it to accelerate signal processing and
vector operations. As a consequence, Malibu implements IPP-enabled datagrams which wrap buffer objects and allow high-
speed manipulations of their contents. These datagram classes reside in the Analysis_Mb library and also derive from the
AccessDatagram template. In addition to IPP-specific functionality, all basic access methods are supported as well.

Table 6. IPP Function Datagrams

Class Name Data Type File

IppCharDG char IppCharDG_Mb.h

Malibu Library User's Manual 91

Class Name Data Type File

IppComplex
DG

Complex IppComplexDG_Mb.h

IppFloatDG float IppFloatDG_Mb.h

IppInteger
DG

int IppIntegerDG_Mb.h

IppShortDG short IppShortDG_Mb.h

Buffer Internals

Buffers are designed to be the primary transport vehicle for data moving from an application to Innovative hardware boards.
This means that there is an advantage in being able to create and move buffers about in our system without copying data
when it is not required, as copying large amounts of data will degrade performance.

Since data transfers to the target are done at least in units of 32 bit words, the internal buffer size and pointers are integer
pointers. Even if the data type is shorter, such as a short or byte, the size still must be an integral number of 32-bit words.
PacketStream buffers have an additional requirement that the header and body be an integral number of 64-bit words,
meaning that the size of each in 32-bit words must be an even number.

In addition, the IPP library has some alignment restrictions on were the data buffers must begin for optimal performance. To
insure that buffers are compatible with this library, Malibu insures suitable buffer alignment.

The buffer class minimizes the cost of copying data by using a handle-body approach. When a buffer is copied, two 'handle'
class instances are created, each pointing to the same header and data body information. This is a faster operation than bulk
copying the large amount of data, especially if the data is only rarely-changed. There are in fact two handles present, one to
the header data and one to the packet data. Both handles manage properly aligned data blocks for use with the IPP library.

If the data body is changed, however, all handles will be affected. This breaks the simplistic logical model. Therefore Malibu
implements a 'copy on write' scheme in which any write to a data region will force the body to be separated from all other
handles and copied. This can be a relatively expensive process. Data access datagrams will properly force this to happen
when used. Using raw pointers to buffer data regions will not, and should therefore be avoided.

A final optimization is that the buffer classes use a shared pool to cache blocks to reduce the time to allocate and free buffer
data blocks. If a buffer of the correct size has been previously freed it will be reused from the cache rather than reallocated.
Provisions are made to pre-allocate buffers of a specified size in order to mitigate allocation time prior to real-time activities.

Data Buffers : The Innovative::Buffer Class

The Buffer class is the class used for all bulk data transfers to Innovative boards. All stream classes exchange Buffer objects.

Malibu Library User's Manual 92

Buffer Class (Buffer_Mb.h)
The Buffer class contains a header block and a data block. The header block is only used and transmitted/received on Packet
Stream boards. Other streams ignore the header, although it is always present and sized to hold at least 2 words.

Like the previous buffers, Buffer uses managed aligned blocks, and is reference counted for fast copying as long as the data
is unchanged.

Unlike before, the Buffer class assumes no type to its contents. The size of the buffer's contents are returned in units of 32-bit
ints. The pointers to the base of the data and header region are available, but access to the contents are best done with
datagrams.

The use of non-const methods such as Data() and Resize() will force a copy of the contents if the Buffer contents are
shared with another buffer. This may invalidate datagrams associated with this buffer.

Holding Template (Buffer_Mb.h)
Because the Buffer class is logically typeless, sizing presents a small problem. With STL containers, such as vectors, one can
create a buffer sized to a specified number of elements. For example:

std::vector<int>(1000);

would make a buffer that is 1000, 32-bit words long. But the Buffer class has no notion of the size of the elements that it
contains. For this reason, Malibu includes the Holding template. This template performs the conversion of a size in
elements of a type to a size in integers needed by the Buffer constructor. So in the case above where we need to hold 1000
short integers:

Innovative::Buffer KiloBuf(Holding<int>(1000));

This sizes the Buffer to be large enough to hold the 1000 integer elements that will be accessed later using a datagram class.

MessageDatagram (Buffer_Mb.h)
A specialty access datagram class interface has been created to simplify filling packet stream buffers with command
parameters similar to those used in the message packets used on Matador cards and C64x streaming. This interface, called
IDatagram, allows access to the data as a heterogeneous collection of data – for example one argument can be an integer and
the next a float.

Previous versions of Malibu employed PmcBuffers which had an implementation of this interface to support sending
packets containing commands to boards with DSPs such as the M6713 and P25 called PmcBufferDatagram. Within the
current Malibu, this has been renamed MessageDatagram to more closely follow the use of the object.

Buffer Data Access

The data access requirements seem to require contradictory features: Support for many types of data quickly and easily is
required, but a minimal code base is desired. Templates solve this problem very cleanly. A template class can be
instantiated for many data types from a single code base. If a feature is added to the template, it is added to them all.

In fact, the template allows the user to apply his own structure to a buffer as easily as any that we provide.

Malibu Library User's Manual 93

The data access template provides a view of a buffer as an array of same-typed data. So an integer datagram accesses the
buffer as an array of integers.

Access Template Features

Template AccessDatagram<T> (AccessDatagrams_Mb.h)
The access datagram uses an interface as its view of the buffer to on which to operate. This decouples the template from the
Buffer class itself and makes the template more general. The buffer class implements the interface by deriving from
IDatagrammable, so all buffers can be accessed by the template easily:

 Buffer A(128);
 AccessDatagram<unsigned int> A_dg(A); // accesses buffer A

 for (int i=0; i<A_dg.size(); i++)
 A_dg[i] = i;

The for-loop in the above code fills the buffer with a ramp. The size() method returns the size of the data in elements. The
datagram array operator accesses the data in the buffer as an array of unsigned int. This version is not range checked.
The at() method performs the same access with range checking.

There are some additional methods for returning sizes. The size() method returns the size in elements.
SizeInElements() is an alias for that method. SizeInInts() returns the size in integers, and SizeInBytes() returns
the size in bytes. ElementSizeBytes() returns the size of the access element in bytes.

The access datagram supports resizing the associated buffer.

An access datagram can be constructed from any structure. For example:

 struct FourSamples
 {
 unsigned short sample[4];
 }

 Buffer B(100);
 AccessDatagram<FourSamples> B_4Sample_dg(B); // accesses buffer B

 for (int i=0; i<B_4Sample_dg.size(); i++) // size will return 50 here
 {
 B_4Sample_dg[i].sample[0] = i;

 B_4Sample_dg[i].sample[1] = i + 100;
 B_4Sample_dg[i].sample[2] = i + 200;
 B_4Sample_dg[i].sample[3] = i + 300;

 }

Since the size of the element is 2, 32 bit words, the buffer only fits 50 elements in the 100 words.

AccessDatagram supports an STL iterator over the data. This iterator is a random access iterator. Forward and reverse
iteration is supported using the standard begin(), end(), rbegin(), and rend() methods. Constant versions of iterators
allow read-only access.

 Buffer C(Holding<float>(20));
 AccessDatagram<float> C_dg(C); // accesses buffer C

Malibu Library User's Manual 94

 // write
 for (AccessDatagram<float>::iterator iter = C_dg.begin(); iter != C_dg.end(); ++iter)
 *iter = i;

 // read – outputs 0.0, 1.0, 2.0...
 for (AccessDatagram<float>::const_iterator iter = C_dg.begin(); iter != C_dg.end(); ++iter)
 Output(*iter);

 // read backward – outputs 19.0, 18.0, 17.0...
 for (AccessDatagram<float>::reverse_iterator iter = C_dg.rbegin(); iter != C_dg.rend(); ++iter)

 Output(*iter);

The availability of these iterators also allows STL algorithm templates to be used on buffers via datagrams. The following
code fills a buffer with 0 using the std::fill algorithm.

 Buffer D(Holding<unsigned int>(20));
 AccessDatagram<unsigned int> D_dg(D);
 std::fill(D_dg.begin(), D_dg.end(), 0);

Note: A datagram object can be made invalid by certain operations on the buffer. Since the datagram cache the information
about the data for speed, if the buffer changes the iterator will no longer point to its assumed buffer, and may point nowhere.
Similarly, any iterators created from a datagram can be invalidated by these operations.

 Buffer E(Holding<unsigned int>(20));
 Buffer F;

 F = E; // F shares E's buffer

 AccessDatagram<unsigned int> F_dg(F);

 F.MakeUnique(); // F_dg now invalid!

In the above code sample, two buffers share the same data block after the assignment. When F is split away via the
MakeUnique() method, F_dg is no longer pointing to F's buffer. (In this case it is probably pointing to E's buffer). Similar
issues can occur with multiple datagrams:

 Buffer E(Holding<unsigned int>(20));

 AccessDatagram<unsigned int> E_dg(E);
 AccessDatagram<unsigned short> E_short_dg(E);

 E_short_dg.Resize(500); // E_dg now invalid!

In the above code, when the second datagram changes the internal buffer by resizing it, the E_short_dg datagram is updated
to match the new block, but E_dg is not and is invalidated. To mitigate these problems, datagrams should be constructed as
close to the point of use as possible. Also, a datagram can be revalidated with the renew call:

 E_dg.Renew(); // E_dg now valid again.

Renew() does not re-validate any iterators created by the datagram that also were invalidated. These remain invalid.

Template Class DatagramIterator (AccessDatagrams_Mb.h)
This template provides the iterator objects for the access datagram. It is a standard random-access iterator supporting
forwards and backwards iteration.

 // Iterator Test
 Log("Iterator Test!");

Malibu Library User's Manual 95

 Buffer A(100);

 AccessDatagram<int> A_dg(A);

 AccessDatagram<int>::iterator Iter1 = A_dg.begin();
 AccessDatagram<int>::iterator Iter2 = A_dg.begin();

Iterators can be compared with each other.

 Log("Compare equal Iterators");
 {
 std::stringstream msg;
 msg << " ==: " << (Iter1==Iter2) << " !=: " << (Iter1!=Iter2) <<
 " <: " << (Iter1<Iter2) << " <=: " << (Iter1<=Iter2) <<
 " >: " << (Iter1>Iter2) << " >=: " << (Iter1>=Iter2) ;
 Log(msg.str());
 }

Subtracting iterators gives the 'distance' between them in elements.

 Log("Iterator Difference");
 ++Iter1; ++Iter1; ++Iter1;
 int delta = Iter1 – Iter2; // delta is 3
 {
 std::stringstream msg;
 msg << "Pointer Difference " << delta ;
 Log(msg.str());
 }

Iterators can be assigned, pointing them to the same location. They can be offset like pointers

 Log("Iterator Assign");
 AccessDatagram<int>::iterator Iter3 = A_dg.begin() + 10;
 int delta2 = Iter3 – Iter1; // delta2 is 7
 Iter3 = Iter2;
 int delta3 = Iter3 – Iter1; // delta3 is -3
 {
 std::stringstream msg;
 msg << "Delta2 " << delta2 << " Delta3 " << delta3; ;
 Log(msg.str());
 }

 Log("Compare Unequal Iterators (A>B)");
 {
 std::stringstream msg;
 msg << " ==: " << (Iter1==Iter2) << " !=: " << (Iter1!=Iter2) <<
 " <: " << (Iter1<Iter2) << " <=: " << (Iter1<=Iter2) <<
 " >: " << (Iter1>Iter2) << " >=: " << (Iter1>=Iter2) ;
 Log(msg.str());
 }

Iterators can use the bracket notation just like a pointer or array can. It adjusts the location without moving the iterator.

 for (int i=0; i<100; i++)
 Iter2[i] = i;

Datagram iterators can be bound to any class that supports the IIteratable interface. This allows the code to be reused if
new datagrams are developed.

Malibu Library User's Manual 96

Interface Class IDatagrammable (AccessDatagrams_Mb.h)
This interface allows the access datagram to bind to a buffer class. The buffer class derives from IDatagrammable allowing
access to the data portion of the buffer. Users can implement this interface to allow the access template to work on another
class. There are several examples of this in the library, one being AlignedBlockDatagram which builds an interface for the
AlignedBlock class.

//==
// CLASS IDatagrammable -- Interface required to support datagrams
//==

class IDatagrammable
{
public:
 virtual ~IDatagrammable() {}

 virtual unsigned int DatagramSize() = 0;
 virtual int * DatagramBasePtr() = 0;
 virtual bool MakeWritable() = 0; // returns 'true' if buffer renewed
 virtual void Resize(unsigned int size_in_ints) = 0;
};

Interface Class IIteratable (AccessDatagrams_Mb.h)
This interface allows the Datagram Iterator template to bind to a Datagram class. Any class supporting IIteratable can
be iterated-through with a DatagramIterator.

//==
// CLASS IIteratable -- Interface required to support iteration over data
//==

class IIteratable
{
public:
 virtual char * Base() = 0;
 virtual size_t SizeInBytes() = 0;
};

Standard Implementation Classes

The Malibu library provides some standard implementations of access datagrams. These provide shorter names that the full
template syntax, and also allow a reference to the original buffer to be returned by the WrappedBuffer() method.

IntegerDG (BufferDatagrams_Mb.h)
Provides access as integers.

UIntegerDG (BufferDatagrams_Mb.h)
Provides access as unsigned integers.

Malibu Library User's Manual 97

FloatDG (BufferDatagrams_Mb.h)
Provides access as floating point data.

ShortDG (BufferDatagrams_Mb.h)
Provides access as short integers.

ComplexDG (BufferDatagrams_Mb.h)
Provides access as complex numbers.

CharDG (BufferDatagrams_Mb.h)
Provides access as characters.

IPP Implementation Classes

The original buffer classes provided methods to use IPP functions to manipulate the buffer. These datagrams preserve the
functions so that code using them can be easily ported to the new library. One difference from the old classes is that datagram
methods that create a new buffer return a Buffer, not a datagram This buffer then must be wrapped in a datagram to be
manipulated further.

// Assume A, B, C are buffers containing float data
IppFloatDG A_dg(A);
IppFloatDG B_dg(B);
IppFloatDG C_dg(C);

Buffer D = A + B + C; // will not compile! Can't Add buffers

Buffer D = A_dg + B_dg + C_Dg; // will not compile! Can't use the temporary

// correct way to sum A, B, and C
Buffer AB = A_dg + B_dg;
IppFloatDG AB_dg(AB);
Buffer D = AB_dg + C_Dg;

All the calculations supported before can be performed in the new system, but it may well be more verbose due to the
requirement to explicitly assign temporary sums to a buffer handle and wrapping them in a datagram before continuing.

IppCharDG (IppCharDG_Mb.h)
Character IPP vector functions.

IppComplexDG (IppComplexDG_Mb.h)
Complex IPP vector functions.

IppFloatDG (IppFloatDG_Mb.h)
Float IPP vector functions.

Malibu Library User's Manual 98

IppIntegerDG (IppIntegerDG_Mb.h)
Integer IPP vector functions

IppShortDG (IppShortDG_Mb.h)
Short IPP vector functions.

Special Purpose Datagrams

PacketBufferHeader (BufferHeader_Mb.h)
This datagram is crafted to access the header of a buffer rather than the data. In addition, it defines some additional methods
to access the header information fields used by Packet Stream buffers.

Table 7. PacketBufferHeader Field Methods

Method Name Description

PeripheralId() Access PID field of header (Packet Type)

PacketSize() Size of entire packet in words (data and header)

DataSize() Size of data region in words

IDatagram Template (Datagram_Mb.h)
This datagram is designed to allow access to a buffer as a heterogeneous collection of arguments, like a command packet.
This is especially useful for Packet Stream boards with co-processors, like the P25 and M6713 as it is common for the host
and target software to have to communicate via a command protocol. This datagram provides a similar interface than that
used by Matador message packet and the TI Bus-master stream mail packets. This aids in porting code between these
platforms.

MessageDatagram (Buffer_Mb.h)
This datagram implements the IDatagram interface on a Buffer.

Internal Datagrams (various CPPs)
The original buffer classes had functions that were used internally by stream classes to move data to and from data packets to
the hardware. These have been separated out into separate datagram classes, removing them from the interface of the user
classes.

Malibu Library User's Manual 99

Guidelines for Converting to new Buffers

Translate all buffers to be Innovative::Buffer
Previous code may have used PmcBuffers, IntegerBuffers, MemoryBuffers, or something else. All these references
must be replaced by Buffers.

The original buffer type may give you a guideline on which type of data access datagram you will need, if any.

Convert array operators on buffers
The old buffer classes used to provide a native array operator method. These no longer exist. You have to create a access
datagram to do the same thing.

// Original Code:

 static PmcBuffer Packet;
 //
 // Extract the packet from the Incoming Queue...
 Event.Sender->Recv(Packet);

 for (int i=0; i<Packet.Size(); i++)
 Log(Packet[i]);

// Ported Code

 static Buffer Packet;
 //
 // Extract the packet from the Incoming Queue...
 Event.Sender->Recv(Packet);

 IntegerDG Packet_DG(Packet);
 for (int i=0; i<Packet_DG.size(); i++)
 Log(Packet_DG[i]);

An IntegerDG datagram is used since the PmcBuffer's native size was integer. A FloatBuffer would have used a
FloatDG to produce the same effect.

Note that the datagram was created as late as practical, to avoid any issues with invalidation by the Recv() method of the
stream.

Size Issues
The original buffers used Size() to give the size in elements. In order to force a reexamination of various size calls, the new
buffers and datagrams do not have a Size() method.

The Buffer class has a SizeInInts() method to return the raw size of the data region. HeaderSizeInInts() returns the
size of the header. FullSizeInInts() returns the sum of these.

Datagram wrappers provide a size() method for compatibility with STL that is size in elements. There is also
SizeInElements() that is more explicit. For calculating rates, SizeInBytes() or SizeInInts() can give the values for
any type directly.

Malibu Library User's Manual 100

Datagrams and Iterators are Disposable
As discussed above, there can be cases where datagrams can be made invalid by changes to their underlying buffer. The best
way to reduce this risk is to consider a datagram as a very volatile entity. Create a datagram at the last minute before use.
Limit its lifetime as much as possible.

Creating a new datagram is inexpensive, so this technique will not cost much in computation time.

Packet Stream Header Access
Normal datagrams only access the data portion of a buffer. To access the header region, use a PacketBufferHeader
datagram.

// ...Old way
//
void ApplicationIo::HandleDataAvailable(PacketStreamDataEvent & Event)
{
 static PmcBuffer Packet;
 //
 // ...Get the packet from the system
 Event.Sender->Recv(Packet);
 //
 // ...Process the packet
 short PacketType = Packet.Header()->PeripheralId();
 switch (PacketType)
 {
 case ccLogin:
 UI->Log("Dsp logged in: " + IntToString(++LoginTally));
 UI->OnLoginCommand();
 break;
 // ...continues

// ...New way
//
void ApplicationIo::HandleDataAvailable(PacketStreamDataEvent & Event)
{
 static Buffer Packet;
 //
 // ...Get the packet from the system
 Event.Sender->Recv(Packet);
 //
 // ...Process the packet
 PacketBufferHeader PktHeader(Packet);

 short PacketType = PktHeader.PeripheralId();
 switch (PacketType)
 {
 case ccLogin:
 UI->Log("Dsp logged in: " + IntToString(++LoginTally));
 UI->OnLoginCommand();
 break;
 // ...continues

The PacketBufferHeader has methods to set or get the fields of a buffer to be used in packet streaming applications.

Porting Buffer Access Modes #1 – The Aztec Model
Here we look at how buffers are accessed in applications and how the new style can improve matters. In this mode of access
the programmer pulls all the interesting parts out of the object and works with them. The main reason for this was that we
wanted to use a different data type. This is far better done with an access datagram.

Malibu Library User's Manual 101

//---
// BlockChecker::Ramp16BitCheck() -- verify loopback
//---

bool BlockChecker::Ramp16BitCheck(PmcBuffer & pda, unsigned int block_idx)
{

 //
 // we have short data so recast the pointer
 short * Data = pda.ShortPtr();
 const int ShortScaleFactor = sizeof(int)/sizeof(short);

 bool is_error;
 if (Data[0] != (short)NextBlockStartVal)
 is_error = true;
 else
 is_error = false;

 NextBlockStartVal = Data[0] + pda.Size()*ShortScaleFactor;
 if (is_error)
 return true;
 // ...in-block continuity
 for (unsigned int i=1; i<pda.Size()*ShortScaleFactor; i++)
 if (Data[i] != Data[i-1]+1)
 return true;

 return false;
}

Since we wish to access as short integers, we will create a short datagram. This choice makes all the code to convert sizes
unnecessary, as the short datagram knows how many elements it has in it.

//---
// BlockChecker::Ramp16BitCheck() -- verify loopback
//---

bool BlockChecker::Ramp16BitCheck(Buffer & pda, unsigned int block_idx)
{
 ShortDG pda_dg(pda);

 bool is_error;
 if (pda_dg[0] != (short)NextBlockStartVal)
 is_error = true;
 else
 is_error = false;

 NextBlockStartVal = pda_dg[0] + pda_dg.size();
 if (is_error)
 return true;
 // ...in-block continuity
 for (unsigned int i=1; i<pda_dg.size(); i++)
 if (pda_dg[i] != pda_dg[i-1]+1)
 return true;

 return false;
}

Porting Buffer Access Modes #2 – Buffer [] operator
This code is a bit nicer, in that we used the array access methods of the buffer to access the contents. Of course, these
methods no longer exist.

Malibu Library User's Manual 102

//---
// BlockChecker::LoopbackCheck() -- verify loopback
//---

bool BlockChecker::LoopbackCheck(PmcBuffer & pda, unsigned int block_idx)
{
 //
 // check for gaps in between packets
 bool is_error;
 if ((unsigned int)pda[0] != NextBlockStartVal)
 is_error = true;
 else
 is_error = false;

 NextBlockStartVal = pda[0] + pda.Size();
 if (is_error)
 return true;
 // ...in-block continuity
 for (unsigned int i=1; i<pda.Size(); i++)
 if (pda[i] != pda[i-1]+1)
 return true;

 return false;
}

The IntegerDG Access datagram is a fast substitute:

//---
// BlockChecker::LoopbackCheck() -- verify loopback
//---

bool BlockChecker::LoopbackCheck(Buffer & pda, unsigned int block_idx)
{
 IntegerDG pda_dg(pda);
 //
 // check for gaps in between packets
 bool is_error;
 if ((unsigned int)pda_dg[0] != NextBlockStartVal)
 is_error = true;
 else
 is_error = false;

 NextBlockStartVal = pda_dg[0] + pda_dg.size();
 if (is_error)
 return true;
 // ...in-block continuity
 for (unsigned int i=1; i<pda_dg.Size(); i++)
 if (pda_dg[i] != pda_dg[i-1]+1)
 return true;

 return false;
}

As an alternative, you can use iterators. Note the use of operator [] in the loop to look backwards at the previous sample
from the current location. As an alternative, *(iter-1) could have been used. In use, iterators act much as a pointer would
and code written for pointers converts naturally to using an iterator in place of the pointer.

//---
// BlockChecker::LoopbackCheck() -- verify loopback
//---

bool BlockChecker::LoopbackCheck(Buffer & pda, unsigned int block_idx)
{

Malibu Library User's Manual 103

 IntegerDG pda_dg(pda);
 IntegerDG::iterator iter = pda_dg.begin();
 //
 // check for gaps in between packets
 bool is_error;
 if ((unsigned int)(*iter) != NextBlockStartVal)
 is_error = true;
 else
 is_error = false;

 NextBlockStartVal = (*iter) + pda_dg.size();
 if (is_error)
 return true;
 // ...in-block continuity
 iter++;
 for (; iter<pda_dg.end() ; iter++)
 if ((*iter) != iter[-1]+1)
 return true;

 return false;
}

Porting Buffer Access Modes #3 -- Applying a Structure to Buffer Content
In some cases example programs use this technique to overlay a structure on a message packet:

 // Display capture stats
 ResultsInfo Info;
 memcpy(&Info, Packet.IntPtr(), ResultsInfoSize);

 UI->Log("PreOverrun flag: " + IntToString(Info.PreOverflow));
 UI->Log("PostOverrun flag: " + IntToString(Info.PostOverflow));

Interface datagrams allow this code to do the same thing by laying the structure over the data using the access datagram.
Then, the data can be copied using structure assignment rather than memcpy():

 // Display capture stats
 ResultsInfo Info;
 AccessDatagram<ResultsInfo> PacketDG(Packet); // apply structure
 Info = PacketDG[0]; // copy out

 UI->Log("PreOverrun flag: " + IntToString(Info.PreOverflow));
 UI->Log("PostOverrun flag: " + IntToString(Info.PostOverflow));

In fact, in this case there is no need for the copy at all, as the data could be read from the datagram directly:

 // Display capture stats
 AccessDatagram<ResultsInfo> PacketDG(Packet); // apply structure

 UI->Log("PreOverrun flag: " + IntToString(PacketDG[0].PreOverflow));
 UI->Log("PostOverrun flag: " + IntToString(PacketDG[0].PostOverflow));

Malibu Library User's Manual 104

Chapter 14. Using the X6 Family Baseboards in Malibu

Overview

The X6 family of baseboards a number of changes from the X5 and X3 family baseboards. These differences will impact the
application using an X6.

The most profound change is that the X6 introduces a new style of data streaming. The raw data is enclosed in VITA
standard formatted packets, that are enclosed in a packet similar, but not identical to the X5 and X3 buffers. This means that
there is no longer a single kind of Buffer, but now three different flavors of buffers may be in use.

Buffers and their Type

The concept of the Innovative::Buffer class is that of a container of generic data. The type and format of the data contained in
a buffer is defined by the datagram object used to view it. What had been consistent, the presence of a header of a fixed size,
is required to be different for these new types of data. A class is needed to manage these differences.

Buffer class Header Size Trailer Size Description

Buffer 2 words n/a Original buffer, plus the common base for all buffers

PmcBuffer 2 words n/a X3/X5 buffer formats

VeloBuffer 4 words n/a X6 stream buffer wrapper

VitaBuffer 7 words 1 word X6 stream buffer data packet

The Vita buffers require a trailer in addition to the header and data sections. To accommodate this, all buffers now include a
Trailer section in addition to the Header and Data. Since older code will not access this section, the presence of the trailer
will not harm legacy applications.

Most software processing buffers only are interested in the data portion of the buffer. This code will be able to work
identically on all kinds of buffers without problems. For example, a buffer filling function coded like this:

void MyBufferStuffer(Buffer & buf_to_fill);

MyBufferStuffer can handle any buffer type without any problems

VeloBuffer Vbuf;
PmcBuffer Pbuf;
Buffer Buf;

MyBufferStuffer(Vbuf);
MyBufferStuffer(Pbuf);

Malibu Library User's Manual 105

MyBufferStuffer(Buf);

Note that Pbuf and Buf actually have exactly the same format, although they are not identical types. But a function can be
written to only allow particular types to be passed in:

void VeloBuffersOnly(VeloBuffer & buf);

MyBufferStuffer(Vbuf); // works
MyBufferStuffer(Pbuf); // does not compile – PmcBuffers not allowed.

This technique is used on the X6 Streaming object to only allow Vita and Velo packets to be streamed.

Buffer Conversions

At times, these types can introduce some difficulties. For example, lets say you already have a generator function that creates
buffer objects full of data for output. So this function returns a buffer object, and has a signature like this:

Buffer BufGen();

Buffer Dbuf = BufGen();

But if you use this function with a VitaBuffer:

 VitaBuffer Vbuf = BufGen();

You have a problem. The assignment copies all the parts of the buffer – header, trailer, and body. But the header and trailer
of the Buffer are incorrectly sized. Code (such as streaming) that relies on properly formatted packets will fail.

To help with this situation, a template function ConvertData has been defined to create a correct buffer of one type from
another, copying only the data.

VitaBuffer Vbuf;
Buffer Dbuf = BufGen();
Vbuf = ConvertData<VitaBuffer>(Dbuf); // Vbuf shares Dbuf's data only.

The header and trailer of Vbuf will be overwritten with those in the temporary VitaBuffer returned. If you want to preserve
your VitaBuffer's header and trailer for some reason do this:

VitaBuffer Vbuf;
… set up Vbuf header/trailer
Buffer Dbuf = BufGen();
VitaBuffer scratch = ConvertData<VitaBuffer>(Dbuf);
Vbuf.SwapData(scratch); // header and trailer unaffected

Applying a Type
At times you can have the opposite situation – you have a proper buffer, header and all, but it has the wrong type. This
happens in the library when we share code with X3/X5 streaming systems, and it can happen in this situation in an
application: assume you have a piece of code that you want to only accept PmcBuffers, and a generator that creates Buffer
objects from legacy code:

void PmcBuffersOnly(PmcBuffer & buf);

Buffer Dbuf = BufGen();

Malibu Library User's Manual 106

So even though the buffer Dbuf is perfectly formatted to be passed into PmcBuffersOnly(), its incorrect type makes it
impossible. For this, we have another template function Convert<>(), which shares all sections with the original buffer and
changes its type:

Buffer Dbuf = BufGen();
PmcBuffer Pbuf = Convert<PmcBuffer>(DBuf);
PmcBuffersOnly(Pbuf); // works

These conversions are all fast, since they only involve moving pointers around. No data is copied by any of these
conversions.

Buffer Sizing Template Functions

These functions already existed before, but this is a good place to mention it. Since Buffers are generic, the size arguments in
the constructors and in Resize() use the size in integers as an argument. Writing unit conversion code from scratch is error
prone, so these template functions exist:

Holding<T>() :: Sizing a buffer to hold N elements
This template function is intended for use in a constructor or Resize() call to make sure the resulting buffer can hold N
elements. For example, to make a buffer hold 1000 doubles, use”

Buffer DoubleStore(Holding<double>(1000)); // DoubleStore.SizeInInts() will be 2000

CouldHold<T>() :: Elements in a current buffer
This is more or less the reverse operation. Given a buffer, how many elements could it hold without resizing. (In effect this is
what the size would be if the buffer were wrapped in a datagram of that type).

unsigned int shorts_available = CouldHold<short>(DoubleStore.SizeInInts()); // result is 4000

Buffer Header Datagrams

The increase in the number of buffer types also means there needs to be Header Datagrams to access them.

Buffer class Header Datagram Description

Buffer PacketBufferHeader, PacketHeaderDatagram Original datagram for the X3/X5, plus an alias to follow new
naming convention.

PmcBuffer PmcHeaderDatagram X3/X5 buffer formats

VeloBuffer VeloHeaderDatagram X6 stream buffer wrapper

VitaBuffer VitaHeaderDatagram X6 stream buffer data packet

The datagrams for all buffer types except the Vita buffer have the same interface. The first word of the header is the standard
PeripheralId() field, and the remainder is the packet size. A DataSize() field allows setting the size without caring about the
size of any header or trailer size.

Malibu Library User's Manual 107

The Vita Buffer's header has a different format. There is a 16 bit size field, a StreamId that acts much like the PeripheralId
does for the other packets. Any other information in the header will be supported by methods of this datagram.

Buffer Trailer Datagrams

The addition of trailers means there be Trailer Datagrams to access them.

Buffer class Trailer Datagram Description

VitaBuffer VitaTrailerDatagram X6 stream buffer data packet

Since the VitaBuffer is the only buffer to use trailers, this is the only one with an explicit trailer datagram defined. The main
function of interest in this case is the Padding() field. Vita buffers must be an even multiple of four words long. The system
supports the truncation of a packet when data ends (for example when a trigger falls) so that all data before the boundary is
transmitted. If the full four word packet is incomplete, the Padding() field of the trailer is set to show what part of the last 16
byte double word is “padding” – that is, not full of data. The value of this field is 0-15, where 0 means all data is valid, and
15 means that only the first byte is valid.

The AccessDatagram template and all classes derived from it understand the Padding() call and will truncate the effective
size of the buffer to avoid the padding. So assume a Short datagram is wrapped around a buffer with a padding of 1. The
datagram will ignore the last short integer (2 bytes) because one of them is invalid. An integer datagram would ignore the
last four bytes. Only a char datagram would allow viewing of all valid data and still ignore the invalid data.

Buffer Header/Trailer Utility Functions

These functions perform some useful operations on buffer headers and trailers.

Clear Functions

void ClearHeader(Buffer & buffer); // fill with 0s
void ClearTrailer(Buffer & buffer);

These functions clear the header or trailer of a buffer. They work with any buffer type.

Header Correctness Functions

void InitPmcHeader(Buffer & buffer); // "correct" Header
void InitHeader(PmcBuffer & buffer); // (make size correct and
void InitHeader(VeloBuffer & buffer); // other required fields
void InitHeader(VitaBuffer & buffer);

These functions make sure the headers are correct for each type. An important check is to fill the size field with the current
size of the Data region plus headers and trailers. The Vita packet has some additional required fields that are initialized
correctly by this function.

Malibu Library User's Manual 108

Trailer Correctness Functions

void InitTrailer(VitaBuffer & buffer); // "correct" Trailer

This function makes sure all required fields of the trailer are initialized correctly.

Header Size Conversion

void ConvertHeader(VeloBuffer & buffer); // if Velo Buffer has wrong type of header, fix it

This function corrects a buffer whose header was resized by some legacy operation to be the correct size for Velo packets. It
copies the contents of the original header, as much as possible. It also calls Clear() and InitHeader() in the process.

New Streaming Object – VitaPacketStream

The new streaming format of the X6 family is supported by a new streaming object, VitaPacketStream. The
VitaPacketStream object connects to an X6 board exactly as the PacketStream object connected to an X5 or X3 board to
implement the stream functionality.

The most fundamental difference between the VitaPacketStream is the format of the packet data. In PacketStream, each
packet contains raw data from the source device. These packets were PmcBuffers. In VitaPacketStream, the basic packet
streamed is a VeloBuffer. The contents of the VeloBuffer is a stream of VitaBuffer data. This stream is not necessarily
aligned on VitaBuffer boundaries.

There are Malibu objects to simplify the construction of these packets, as described in the next section.

Connection
A VitaPacketStream is associated with a particular X6 board object with the ConnectTo() method. If Module is an X6
baseboard and Stream a VitaPacketStream, the following code shows the connection and disconnection process:

 Stream.ConnectTo(Module);
 FStreamConnected = true;
 Log("Stream Connected...");

 … code that uses the Stream and board …

 Stream.Disconnect();
 FStreamConnected = false;
 Module.Close();

Native Buffer Methods
 VeloBuffer NativeBuffer(size_t data_size, bool autoinit=true);
 VitaBuffer NativeVitaBuffer(size_t data_size, bool autoinit=true);

These methods produce a properly typed buffer for use with the streaming object. The autoinit parameter, if true, will
initialize the buffer header and trailer for the buffer to zeros and for required values. This is done by calling the standard
buffer InitHeader and ClearHeader functions. The VitaBuffer version also clears and initializes the trailer using InitTrailer
and ClearTrailer.

Malibu Library User's Manual 109

Send and Recv Methods
 virtual void Send(short PeriphId, VeloBuffer & packet);
 virtual void Send(VeloBuffer & packet);
 virtual void Recv(VeloBuffer & packet);

Like PacketStream, these methods are used to dispatch a new packet to the output, or read a packet from the input. These can
be used alone, asynchronously, or in conjunction with the stream data notification callback events for a more demand driven
interface.

Stream Data Notification Events
 OpenWire::EventHandler<VitaPacketStreamDataEvent> OnVeloDataRequired;
 OpenWire::EventHandler<VitaPacketStreamDataEvent> OnVeloDataAvailable;

These notification events allow the user to install a handler method that will be called when a data packet arrives as input
(OnVeloDataAvailable) or when a new buffer should be sent to the output (OnVeloDataRequired). The application then
uses the Send() method to issue a completed output buffer or the Recv() method to obtain the next input buffer.

Each event that is handled needs to be hooked to an application function or method to be used, as shown below. An unhooked
event is silently ignored.

Stream.OnVeloDataRequired.SetEvent(this, &ApplicationIo::HandleDataRequired);
Stream.OnVeloDataAvailable.SetEvent(this, &ApplicationIo::HandleDataAvailable);

Direct Data Mode
VitaPacketStream also supports Direct Data Mode, where raw slabs of data are processed without being broken up into Velo
or Vita packets. This allows higher rate logging applications, since a minimal amount of processing is being done on the data.
This is done in an identical fashion to PacketStream, since it is a function of the common base class to both stream objects,
PacketStreamBase.

Working with Vita Packet Streams

The data in a Velo buffer is part of a stream of Vita packet data. This stream does not need to be aligned on packet
boundaries. This makes parsing more difficult, as all packets need to be accounted for to properly extract the data. Malibu
contains a pair of objects to insert Vita packets into Velocia packets (VitaPacketPacker) or to extract Vita packets from the
stream (VitaPacketParser).

VitaPacketParser – Parsing Input Packets

The VitaPacketParser object is used to extract Vita packets from the Velo packets received. To set up, you need to create the
object in your application class:

 Innovative::VitaPacketParser Vpp;

Then as part of the initialization, add a handler to the OnImageAvailable event. This handler is called when the parser finds a
complete Vita packet in the data stream.

Malibu Library User's Manual 110

 Vpp.OnImageAvailable.SetEvent(this, &ApplicationIo::Handle_VPP_ImageAvailable);

In the Snap example application, we read in a previously logged Velo packet stream in and extract the Vita packets in as a
post processing step. This could also be done along with logging, but the extra processing reduces the data rate of the
application.

 // ...Reset Vita Parser
 Vpp.Clear();
 //
 // Start Playback
 IntermediatePlayer.Start();

 VeloBuffer PB_Buffer;
 while (1==1)
 {
 // Extract Velo Blocks, Quit if done
 unsigned int good = IntermediatePlayer.PlayWithHeader(PB_Buffer);
 if (!good)
 break;

 // Parse Blocks
 Vpp.Append(PB_Buffer);
 Vpp.Parse();

Each Velo packet is appended to the parser and processed when Parse() is called. Parse() will walk through the data in the
parser, finding all packets and calling the OnImageAvailable() for each one. All buffers must be passed in to allow the
parsing to process the entire data stream.

 // Quit if Parser has an error?
 }
 IntermediatePlayer.Stop();

For efficiency, the parser returns an object pointing to the image of the data in the original buffer. This allows the handler to
only copy buffers with data of interest rather than all buffers streamed. The image class allows the inspection of the header
region to return the Vita Stream identification word to determine the data type. If the data is found to be of interest, the
Image class has the CopyDataTo() method to create a VitaBuffer from the image data. This buffer can then be analyzed using
standard Malibu tools.

//---
// ApplicationIo::Handle_VPP_ImageAvailable() -- Parser callback
//---

void ApplicationIo::Handle_VPP_ImageAvailable(Innovative::VitaPacketParserImageAvailable & event)
{
 // Create Vita Packet
 VitaBuffer Vita;
 // Fill with Image Data
 event.Image.CopyDataTo(Vita);

 // ...Process Vita Packet Data
}

Malibu Library User's Manual 111

VitaPacketPacker – Filling Output Packets

The corresponding helper class for output packets is VitaPacketPacker. To use this, you push Vita packets into the packer,
and when packets of a particular size are accumulated, an event is fired to allow this Velo packet to be processed (presumably
by sending it to the VitaPacketStream output with Send()).

This illustration is for a Wave example filling a Velo buffer full of a list of Vita packets holding a waveform. This is done
once at start, and the Waveform buffer sent repeatedly when wave data is needed during the run.

 //
 // We now have the data in a regular buffer. We need to copy it into
 // VITA buffers, and then those VITAs into the Waveform packet
 std::vector<Innovative::VitaBuffer> VitaQ;

 ...copy buffer into queue of Vita Packets...

At this point we have our Vita packets pre-made, so we can enter them all at once. You could generate them and Pack each
one at a time if desired.

The normal use of the packer is to insert the buffers after we have entered the packet data size to be the size of output buffer
we want. In this case, its handier for us to just have one resulting buffer that fits the entire pattern in it so that we can send it
over and over, the same as the X5 Wave did. So we intentionally make the “automatic” size too large, so no packets will be
output as we go. Note that the size of the fill pattern includes the size of all the headers and trailers of the Vita packets, as
well as the data itself.

We also hook the callback function before starting the packing.

 //
 // Use a packer to load full VITA packets into a velo packet
 // ...Make the packer output size so big, we will not fill it before finishing
 VitaPacketPacker VPPk(scratch_pkt_size*2);
 VPPk.OnDataAvailable.SetEvent(this, &ApplicationIo::HandlePackedDataAvailable);

 // ...Shove in our VITA packets
 for (unsigned int i=0; i<VitaQ.size(); i++)
 {
 VPPk.Pack(VitaQ[i]);
 }

All the data is packed, but the buffer isn't full so it can' t be sent. To push out these kind of fractional packets, the Flush()
command is provided that truncates the remaining data and outputs it as packet exactly sized for the data. InitHeader() then
called to make sure the size field of the header is properly set up.

 VPPk.Flush(); // outputs the one waveform buffer into Waveform

 // WaveformPacket is now correctly filled with data...

 InitHeader(WaveformPacket); // make sure header packet size is valid...

This is the handler called when the Flush() function truncates and emits the packet. Since we constructed this example to only
make one output packet, we just copy it to our Buffer. Other applications could call Send() here to output it, or add the buffer
to a list or vector.

//---
// ApplicationIo::HandlePackedDataAvailable() -- Packer Callback
//---

Malibu Library User's Manual 112

void ApplicationIo::HandlePackedDataAvailable(Innovative::VitaPacketPackerDataAvailable & event)
{
 WaveformPacket = event.Data;
}

Malibu Library User's Manual 113

Chapter 15. Vita Packet Format

Overview

The X6 family of baseboards introduces a new form of data streaming that changes the format of the data packets streamed to
and from the card. This chapter describes the format and the changes from previous use.

X6 Velocia Packets

Packet Header Format

Just as in the X5, data busmastered between the board and the application program is enclosed in a data packet. For the most
part, this packet has not changed. What has changed is that the packet header is now 4 words long, rather than 2. Also, the
total packet size now must be divisible by 4 words rather than 2 as well. This is a reflection of the new internal bus being
made wider for increased efficiency.

Table 8. X6 Velocia (Velo) Packet Header

0 Velocia Header Word

1 (reserved)

2 (reserved)

3 (reserved)

As before, the first word in the header contains the information used to identify the packet and determine its size. The
Peripheral ID is a tag value used to identify the data source – all packets with the same Peripheral ID are defined as making
up a single stream of data. The size allows the parsers to find the next header.

Table 9. Velocia Header Word

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Peripheral ID Packet size (in 32 bit words)

In the Malibu library there are additional classes to support these packets – VeloBuffer to hold packet data and
VeloHeaderDatagram to access the header. The standard access datagrams will operate on VeloBuffers identically with the
original buffers to access the data portion of the packet.

Malibu Library User's Manual 114

Packet Data Format

The contents of an X6 Velocia packet is not raw data as in earlier systems, but a stream of VITA-49 formatted packets that
are processed individually. These packets can be split across Velo packets, so the start of a Velo packet does not mean that a
Vita packet header follows. The initial data could be part of a previous Vita packet's data.

X6 Vita Packets

Like Velocia packets, Vita packets require information included with them in addition to the data to indicate the data source
and other useful information. This header is seven words long. There is an additional trailer word for each packet that
increases the total to 8 words. The total size of a Vita packet on the X6 must be a multiple of 4 words long.

The table below shows a minimal Vita packet – it contains only 4 words of data with its 8 words of header information.

Table 10. Vita Packet Format

0 Header IF Word

1 Header SID Word

2 Header Class OUI Word

3 Header Class Info Word

4 Header Timestamp – Integer Seconds Word

5 Header Timestamp – Fractional Seconds High Word

6 Header Timestamp - Fractional-Seconds Low Word

7 Packet Data 0

8 Packet Data 1

9 Packet Data 2

10 Packet Data 3

11 Trailer Word

The requirement of the Vita packet to remain aligned to a 4 word boundary conflicts with the need to dispatch a packet at
once when events occur such as the trigger signal going off. If the packet remains unsent, part of the data will not arrive and
even if it will eventually come in, part of the packet will have occurred at one time and part at potentially a much later time.
To allow the packet to be sent in the absence of valid data, the concept of Padding was added.

A field in the trailer can be set to indicate to the destination which bytes in the last 16 bytes are not valid data. The
application must ignore this data when processing the buffer. So in the case a trigger ends in the middle of a 4 word block,
the packet can be padded to achieve alignment and the padding field in the trailer set to indicate this to the analysis routines.

Malibu Library User's Manual 115

The Access Datagram classes all recognize this padding value and reduce the size of the packet accordingly. This means the
applications must initialize the Padding field before attempting to fill a packet.

Packet Header Format

The above table shows the arrangement of the seven header words in the header. The remainder of this section will describe
the fields for each word

VITA Header IF word

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Packet Type C T R R TSI TSF Packet Count Packet Size

0001 1 1 0 0

Packet type: set to IF Data packet with Stream Id, binary 0001.

C (bit 27): Optional Class field, enabled.

T (bit 26): Optional Trailer field, enabled.

TSI (bits 23-22): Timestamping format for integer seconds field, configurable.

Table 11. Timestamp Integer Seconds Options

TSI code Meaning

00 No Integer-seconds Timestamp field included (Not supported)

01 UTC: seconds elapsed since January 1, 1970 GMT.

10 GPS: seconds elapsed since January 6, 1980 GMT.

11 Other: seconds elapsed since some documented starting time.

TSF (bits 21-20): Timestamping format for fractional seconds field, configurable between 01 (sample count) or 11 (free
running).

Malibu Library User's Manual 116

Table 12. Timestamp Fractional Seconds Options

TSF code Meaning

00 No Fractional-seconds Timestamp field included (Not supported)

01 Sample count timestamp: fractional seconds since last integer-seconds event,
counting in samples.

10 Real time timestamp: counts in increments of 1 picosecond since last integer-seconds
event. (Not supported)

11 Free running count timestamp: No relation to the integer-seconds field. Counts in
samples.

Packet count: increments on each subpacket with the same Stream Id (PDN). It's allowed to roll over from 1111 to 0000.

Packet size: in 32-bit words, including the header; the packet size is always a multiple of 4 due to how the packets are
handled internally.

VITA Header SID word

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Destination Mask Stream ID

The VITA-49 Stream Id field is split into two 16-bit fields: Destination Mask and Stream Id.

The Destination Mask will help route packets to their destinations (ie. PCIE, Aurora 0 or 1 etc.).

The Stream ID will be used much like the peripheral ID is for Velocia packets – to identify the source or meaning of the data
in the packet.

VITA Header Class OUI Word
This word is reserved.

Vita Header Class Info Word
This word is reserved.

Vita Header Timestamp – Integer Seconds Word
This word contains the integer portion of the timestamp data.

Vita Header Timestamp – Fractional Seconds High and Low Words
These words contain the fractional portion of the timestamp data.

Malibu Library User's Manual 117

Vita Packet Trailer Format

VITA Trailer Word

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Enables 1111 State and Event indicators Padding in
bytes

E Context Packet count

State and Event Bits and Enable Bits

Enable bit position State and event Indicator
bit position

Indicator name

31 19 Calibrated Time

30 18 Valid Data

29 17 Reference lock

28 16 AGC/MGC Indicator

27 15 Detected Signal indicator

26 14 Spectral inversion

25 13 Over-range indicator

24 12 Sample Loss (over-run)

Setting the appropriate bit in the Enable field will cause the State/Event bit to follow the signals given in the table. These will
flag if the enabled conditions occur in the current Vita packet.

Bits 20-23
These should always be set to 1

Context Packet Count
This number tells which context packet is associated with this packet. Context packets can give slowly changing information,
such as temperature readings, into a data stream without burdening each data packet with data that is unlikely to be different
from packet to packet.

Padding
The Padding field indicate how many padding bytes were added to align the current packet to a 4 word boundary. Padding
values can be from 0 (no padding) to 15 (1 data byte valid in the last 4 words).

Malibu Library User's Manual 118

Table 13. Padding Example

Data n-3 Data n-4 Data n-5 Data n-6

Padding 1 Data n Data n-1 Data n-2

Padding 5 Padding 4 Padding 3 Padding 2

Padding 9 Padding 8 Padding 7 Padding 6

Trailer (Padding Field Value = 9)

The above table shows an example of padding. The logic had accumulated the data in grey when the trigger was disabled –
seven bytes of data. The packet can not be sent because the data would not be properly aligned. The logic therefore adds the
nine byte remainder to the packet as padding, and loads the value 9 into the padding field of the trailer.

Analysis routines that check the padding value will properly limit themselves to reading the valid data and ignore the padding
bytes.

Table 14. Maximum Padding for X6 Boards

Source FIFO parallel samples Event size (bits) Maximum Padding (bytes)

1x16 (RX) 16 14

2x16 (400M) 32 12

4x8 (GSPS) 32 12

8x8 (GSPS DES) 64 8

The above table shows the maximum expected padding value for a particular X6 board. The RX, which has one 16 bit sample
per packet for each period, could possibly have to pad 14 of 16 bytes in a 4 word block. Devices which send more data per
sample period will have smaller maximum padding values.

Malibu Library User's Manual 119

Chapter 16. Creating a Custom FMC Module

The Malibu Class Library provides classes that implement the functioning of Innovative FMC modules, as well as that of the
Carrier cards that use them. Customers that want to develop their own module to attach to our cards are obviously not
supported directly with classes. However, there is a way for those customers to develop software that will integrate with the
library just as native Innovative modules do.

FMC Modules and Malibu

First, we need to consider how an FMC module and carrier fit in the Malibu scheme. Previous boards were unified, and one
class object performed all the duties of the card – integration with data streaming, initialization of streaming and analog
properties, configuration of any clocks and triggers, and so on. (Internally we divided up the duties into a trio of
Board/Driver/DeviceMap classes, but the idea remains the same).

From the user's perspective a board needs to be Opened and Closed, and be able to attach to the Streaming object that handles
data streaming. The initiation of streaming is done in the separate data streaming class (here, VitaPacketStream) and the
stream class calls over to the board at times in the stream process to allow the board to initialize itself. The final job that a
board class must do is to provide a clean interface for all of the parameters needed to configure the board – clocks, triggers,
channel enables, status readback registers, stream packet configuration, and so on. This part tends to be the bulk of the code,
as you have to translate in and out the information for not only each register, but each field and bit in a register. In practice
we tend to reuse these clusters of registers from product to product, a practice that was regularized in X6 and later products as
a 'subdevice' class – a collection of registers and access methods and implementation functions bound together as a unit.

The FMC device and carrier design required a change in thinking, and the best software model was to divide up the memory
map and assign the implementation of the aspects of the FMC card to a FMC board class. Just as the physical device is
plugged into the board, the FmcBoard object is plugged into the FMC Carrier card board object. Since this attachment needs
to work for any future product from Innovative, we need an Interface class to define the view a baseboard has of a module.
This interface is the IFmcDaughterCard class.

What this means for makers of custom boards is that if you make your class implement the IFmcDaughterCard interface,
your class will work in a Malibu application as well as an Innovative board will.

The IFmcDaughterCard Interface Class
//==
// CLASS IFmcDaughterCard -- FMC Daughter Card Interface
//==

class IFmcDaughterCard
{
public:
 enum DaughterCardStatusStates
 { dsOk, dsCardPoweredDown, dsNoSoftwareObjectPresent, dsNoCardPresent,

Malibu Library User's Manual 120

 dsCardPowerFailure
 };

 virtual DaughterCardStatusStates BoardStatus() { return FBoardStatus; }

 virtual void ConstructCustomParts() = 0; // call in most derived ctor
 virtual void InitCardPower() = 0;
 virtual void OpenHardware() = 0;
 virtual void PreconfigureHardware() = 0;
 virtual void ConfigureHardware() = 0;
 virtual void StreamStopHardware() = 0;
 virtual void CloseHardware() = 0;
 virtual void RemoveCardPower() = 0;

 // Ficl Interface
 virtual void AfterFiclStart(FiclSystem & engine) = 0;

 virtual int Do_DFetch(int dev, int addr) = 0;
 virtual void Do_DStore(int dev, int addr, int value) = 0;
 virtual void Do_DFreq(int dev, float freq) = 0;
 virtual float Do_DFreqActual(int dev) = 0;

 IFmcDaughterCard() : Owner(0), FBoardStatus(dsCardPoweredDown)
 {}
 virtual ~IFmcDaughterCard()
 {}

 // Memory Spaces
 AddressingSpace PortMemory;
 AddressingSpace LogicMemory;

protected:
 class FmcCarrierBoard * Owner;
 DaughterCardStatusStates FBoardStatus;

 void BoardStatus(DaughterCardStatusStates status)
 { FBoardStatus = status; }

};

BoardStatus()

 enum DaughterCardStatusStates
 { dsOk, dsCardPoweredDown, dsNoSoftwareObjectPresent, dsNoCardPresent,
 dsCardPowerFailure
 };

The initialization of standard FMC cards will set the Board Status enumeration value which can be retrieved by an
application from the BoardStatus() method. To avoid issues with a custom card, the software supporting it should do the
same.

Enumeration Description

dsOk FMC module is properly set up and ready.

dsCardPoweredDown FMC module is powered down by the operator

dsNoSoftwareObjectPresent No FMC software object is connected.

dsNoCardPresent No physical board could be detected.

Malibu Library User's Manual 121

Enumeration Description

dsCardPowerFailure Card power could not be applied due to a resource mismatch.

The FMC standard requires information about the power requirements to be stored in a standard format in a ROM. This rom
will be examined and checked against what the baseboard can deliver. If the requirements of the module are too extreme,
then the module will not be powered up. The last two cases in the above table are ways that this can fail – first if the ROM
cannot be read, and secondly if the information shows that this board will not function on the carrier.

Parts of this process are still being worked out and are subject to change.

InitCardPower() and RemoveCardPower()

 virtual void InitCardPower() = 0;
 virtual void RemoveCardPower() = 0;

These methods are part of the FMC card power management interface, which is still in progress.

ConstructCustomParts()

 virtual void ConstructCustomParts() = 0; // call in most derived ctor

These next eight or so methods are the way that the FMC card, and a custom card tie into the library and the streaming
system. At key points in the lifetime of the baseboard, the library will call the FMC card's methods to give each connected
card a chance to perform the required function. A custom card just has to follow the same rules that Innovative cards do to
be fully functional.

OpenHardware()

 virtual void OpenHardware() = 0;

OpenHardware() is called when resources are first given to the board during the carrier's Open() process. The FMC card can
use this call to set up its software elements in a known good state.

PreconfigureHardware()

 virtual void PreconfigureHardware() = 0;

Some analog devices take a lot of time to set themselves up. Doing this every data run might be expensive, especially if the
setup is not changing in a significant way. Devices that perform in this way can put the key initialization in the
Preconfigure() step, and then perform multiple streaming operations using the same settings. If this is the case for an FMC
device, this call is the place to perform this sort of initialization.

Malibu Library User's Manual 122

ConfigureHardware()

 virtual void ConfigureHardware() = 0;

This is for pre-streaming configuration. Most board set up is done at this stage.

StreamStopHardware()

 virtual void StreamStopHardware() = 0;

This is for post-streaming cleanup.

CloseHardware()

 virtual void CloseHardware() = 0;

CloseHardware() is called during the carrier's Close() process. Any cleanup that the FMC card needs to perform can be done
here.

Memory Spaces and Registers

 // Memory Spaces
 AddressingSpace PortMemory;
 AddressingSpace LogicMemory;

Innovative boards use memory-mapped areas to use as registers for sending parameters to the physical card and reading
status information back from the card. They are not intended for bulk data transfer, which is done via the streaming engine.
The carrier card implements two such spaces, but only the Logic Memory space will be used.

Note that this space gives access to the full memory map, including the carrier card's addresses. This isn't what you want
normally, so our base class creates WishboneBusSpaces to divide up the base region. The only difference is that the
WishboneBusSpace adds a base to turn an FMC relative address into the absolute offset needed for the physical access. A
custom board could do likewise.

 //
 // Data
 WishboneBusSpace WB_FMC_0;

The point of having memory spaces is that the registers can be defined with space and offset as parameters, allowing them to
be reused effectively. Here is a sample register object:

 //~~~
 // CLASS FmcAFE_AdcCommon::AdcTriggerCfgRegister -- Configure ADC Trigger
 //~~~
 class AdcTriggerCfgRegister : public Register
 {
 typedef Register inherited;

 public:
 RegisterBitGroup AdcFrameSize;
 RegisterBit AdcRisingEdge;
 RegisterBit AdcFramedMode;

Malibu Library User's Manual 123

 RegisterBit AdcExternalTrigger;

 public:
 AdcTriggerCfgRegister(IAddressingSpace &space, int offset)
 : inherited(space, offset),
 AdcFrameSize(*this, 0, 24), AdcRisingEdge(*this, 29),
 AdcFramedMode(*this, 30), AdcExternalTrigger(*this, 31)
 {
 }
 };

So the bit and bit group locations can be defined here and modified individually without worry that changing one will trash
the others. In the constructor for the object owning the register (here, it is a subdevice class) you can see the space and
register offsets being loaded into each register at construction time.

FmcAFE_AdcCommon::FmcAFE_AdcCommon(IRequires_FmcCommonParts * mdc, IAddressingSpace & space,
MapRegisters & regs)
 : MDC(mdc), Dev(0),
 AdcEnable_Lo_Reg(space, regs.AfeAdcEnable_Lo_Addr),
 AdcEnable_Hi_Reg(space, regs.AfeAdcEnable_Hi_Addr),
 AdcPower_Lo_Reg(space, regs.AfeAdcPower_Lo_Addr),
 AdcPower_Hi_Reg(space, regs.AfeAdcPower_Hi_Addr),
 AdcTriggerCfgReg(space, regs.AfeAdcTriggerCfg_Addr),
 AdcDecimationReg(space, regs.AfeAdcDecimation_Addr),
 FDevices(0), FChannelsPerDevice(0)

{
}

While this may seem a bit much at first, from experience formalizing the register map makes maintenance vastly easier down
the road as you develop. And much of the effort in the software part of supporting this hardware are the interface from the
user to the board object and the corresponding interface from the board object down to the hardware register or registers.

The FICL Interface

 // Ficl Interface
 virtual void AfterFiclStart(FiclSystem & engine) = 0;

 virtual int Do_DFetch(int dev, int addr) = 0;
 virtual void Do_DStore(int dev, int addr, int value) = 0;
 virtual void Do_DFreq(int dev, float freq) = 0;
 virtual float Do_DFreqActual(int dev) = 0;

Innovative cards implement a threaded interpretive command language in them for debugging purposes. Functions are
defined to access registers 'live' during a program, and programs can be written in the language. One especially useful aspect
of the interface is the device fetch and store methods (d@ and d!). These words are mapped by the board object into calls to
the Do_DFetch() and Do_DStore() ca..s of the carrier card. The carrier card will forward the call to the daughter card if the
device code does not match one defined on the carrier card, thus calling these functions.

A common 'device' defined is that of an I2C device. The raw mechanics of this interface are complicated, and the library
needs to implement them anyway. So attaching a FICL device to this allows you to access this device for debugging as easily
as if it were memory mapped.

Clock devices are also common, and have two additional device functions defined – one to set the clock frequency and one to
report the actual clock frequency.

Malibu Library User's Manual 124

The AfterFiclStart() function is used to predefine any FICL words needed for support. Constants for the devices is a
common one here. That way a user can use “AdcSpi0 100 d@” to fetch the data from address 100 on the AdcSpi0 device.

//---
// FmcAdc20::AfterFiclStart() --
//---

void FmcAdc20::AfterFiclStart(FiclSystem & engine)
{
// engine.Evaluate(" 0 constant Fmc "); ...in baseboard class
 engine.Evaluate(" 100 constant AdcSpi0 101 constant AdcSpi1 102 constant AdcSpi2");
 engine.Evaluate(" 103 constant AdcSpi3 104 constant AdcSpi4 105 constant Pll ");
 engine.Evaluate(" 106 constant TempI2C 107 constant IdromI2C ");
 engine.Evaluate(" 108 constant Vga0I2C 109 constant Vga1I2C 110 constant Vga2I2C ");
 engine.Evaluate(" 111 constant Vga3I2C 112 constant Vga4I2C 113 constant VgaIdromI2C ");

 engine.Evaluate(": ?FmcAdc20 "
 " cr .\" --- FMC SubDevice Constants for d@ d! dFreq dFreqActual --- \" "
 " cr .\" (starting at 100) \" "
 " cr .\" AdcSpi0 AdcSpi1 AdcSpi2 AdcSpi3 AdcSpi4 Pll \" "
 " cr .\" TempI2C IdromI2C \" "
 " cr .\" Vga0I2C Vga1I2C Vga2I2C Vga3I2C Vga4I2C VgaIdromI2C \" "
 " cr "
 " cr .\" ?FmcAdc20 : display this message \" "
 " cr ; ");

 engine.Display("FmcAdc20-specific wordset loaded \n");
}

The final word is a debug aid that just prints out the device codes for an FmcModule. Note that there is a special device Fmc
that offsets the address to be relative to the module memory space. For example, if a Module starts at address 0xC00, then
Fmc 0 d@ is the same as 0xC00 l@ on the carrier card.

Malibu Library User's Manual 125

Chapter 17. Interfacing to Software Applications via a
DLL

Overview

The desire to control one or more Innovative board level products from within a foreign environment such as NI Labview or
Mathworks Matlab is commonplace. Unfortunately, it is virtually impossible to create a universal interface between these
environments and the Malibu C++ libraries that meets all of the needs of every possible application. Fortunately, these third-
party environments provide extensibility via user-supplied dynamic link libraries (DLLs). A user written DLL acts as a
“bridge” between the Malibu C++ and the third party environments.

Development Approach

The DLL must be written in C++ and linked to the Malibu libraries – similar to the process used in the creation of a standard
executable program. The DLL can incorporate any available Malibu class, user-developed C/C++ classes or libraries or other
commercial libraries to implement complex computations in addition to Innovative board control functions. The DLL
provides another opportunity to factor code as required to best meet your application requirements. For instance, analog
time-series data received via bus mastering from an Innovative XMC module within a DLL could be transformed into
frequency domain using the Malibu Fourier class. This frequency domain data could be further analyzed to provide AC
quality information such as SNR or THD using the Malibu AdcStats class and the results of this analysis could be made
available to external applications or third party environments via C-callable functions. Any application that uses the DLL
gains access to this board control and analysis capability.

The most efficient approach to creating such a DLL is to subsume the entire ApplicationIo board control object which is
included in each of the Innovative example programs directly into the user-written DLL. Control of Innovative XMC
modules within supplied examples are factored such that all board control functions and real-time callback handlers are
inplemented in the portable ApplicationIo C++ object. Because this class is compiler and user interface independent, we
recommend incorporation of this class directly into end-user applications and DLLs, since this guarantees that all required
board initialization and control are properly implemented.

Example Source

Complete source code illustrating this technique is available on the II forum here. This project uses the above encapsulation
strategy to assimilate ApplicationIo into a DLL, which exports various board control functions as plain “C-style” function
calls, so that they can be used from environments like LabView or Matlab. The Windows, 32-bit DLL has been written in

Malibu Library User's Manual 126

http://www.innovative-dsp.com/forum/viewtopic.php?t=1611&highlight=dll

C++ under MSVC 2008. All exported functions are C-compatible and will be restricted to use of plain C data types and
structures for parameters.

The underlying C++ code within the DLL uses the Innovative Malibu libraries to perform all board configuration and control
functions. Malibu runs as native machine code, is not dependent on the .NET libraries, but requires that the MSVC runtime
libraries be present on the target machine. This particular example exposes registers of a dual-channel DDC which was
developed in conjunction with custom firmware for a specific application. While the functions in this DLL are specialized
for that application, they are merely representative of the types of functions that could be exposed in any custom static or
dynamic library.

Malibu Library User's Manual 127

Chapter 18. Using the embedded FICL interpreter

Since Innovative products include user-programmable FPGA devices, the requirement to interact with newly-added
peripheral devices is routine. Malibu incorporates an interpreted language facility, named Ficl, which is useful when initially
testing new devices and resources. Ficl is a programming language interpreter designed to be embedded into other systems
as a command, macro, and development prototyping language. Ficl is an acronym for "Ficl Inspired Command Language".

Ficl Features

Ficl is written in strict ANSI C and runs natively on 32- and 64-bit processors. It has a small memory footprint - A fully
featured Win32 console version takes less than 100K of memory, and a minimal version is less than half that.

Ficl is easy to integrate into custom C++ programs. Where most Ficls view themselves as the center of the system and
expect the rest of the system to be coded in Ficl, Ficl acts as a component of your program. Since Ficl is embedded into
Malibu, most C++ applications inherit Ficl with no effort whatsoever.

Ficl is fast, thanks to its "switch-threaded" virtual machine design. Ficl also features blindingly fast "just in time" compiling,
removing the "compile" step from the usual compile-debug-edit iterative debugging cycle.

Ficl is a complete and powerful programming language.

Ficl is an implementation of the Ficl language, a language providing a wide range of standard programming language
features including integer and floating-point numbers, with a rich set of operators, arrays, file I/O, flow control (if/then/else
and many looping structures), subroutines with named arguments and language extensibility.

Ficl is standards-compliant and conforms to the 1994 ANSI Standard for Ficl (DPANS94). See the document
Ficl_Primer.pdf for a tutorial introduction to Ficl, as this knowledge is directly applicable to creation and use of Ficl within
Malibu-based C++ applications.

Ficl is extensible. Ficl is extensible both at compile-time and at run-time. You can add new script functions, new native
functions, even new control structures.

Ficl is interactive. Ficl can be used interactively, like most other Ficls, Python, and Smalltalk. You can inspect data, run
commands, or even define new commands, all on a running Ficl VM. Ficl also has a built-in script debugger that allows you
to step through Ficl code as it is executed.

Ficl is open-source and free. The Ficl licence is a BSD-style license, requiring only that you document that you are using
Ficl. There are no licensing costs for using Ficl.

Previous versions of Malibu utilized specialized scripting classes such as Innovative::Scripter, which were limited in
capability. The new integrated Ficl interpreter renders such classes obsolete.

Malibu Library User's Manual 128

A Beginners Guide

Ficl is embedded into the Snap example provided with most X5 and X3 XMC modules. Launching that application will
result in a display that resembles the following:

You can use upper or lower case to type commands and data, since Ficl is case-insensitive. You can also store commands in
a standard text file using your favorite editor, then execute these commands using the load <filename> command. Ficl
allows execution of the system shell, via the system command, which can be used to invoke you editor to add commands to
a file. For instance under Windows, the command system notepad hello.fr, creates a new text file called hello.fr using
the Notepad editor. New commands added to this file could be loaded into Ficl using the command load test.fr.

Using Ficl

Ficl is an embedded variant of the interpreted language Forth. Review the Forth Primer to become acquainted with the
characteristics and capabilities of this powerful language. The Forth Standard is the definitive reference on the language
features, but most users will find the primer sufficient. The examples illustrated below assume a working knowledge of the
material presented in these documents. The particular features and capabilities of FICL are detailed on the FICL Website.
Note that Malibu implements FICL 3 rather than FICL 4, to allow operation in both 32 and 64-bit environments.

Ficl incorporates a floating point stack in addition to the conventional parameter and return stacks. Floating point values are
recognized via an embedded 'e' within the number. For instance 1.0e3 is interpreted as floating point 1000. Within stack
notation, values prefaced with f: are floating point values and reside on the floating point stack rather than the parameter
stack.

Ficl-enabled XMC module object derive publicly from Innovative::IFiclTarget. Consequently, the following module-
oriented words are available for use:

Malibu Library User's Manual 129

Event log displays Ficl interpreter responses

Command line accepts Ficl commands

http://ficl.sourceforge.net/index.html
file:///C:/Manuals/Malibu/ansforth.pdf
file:///C:/Manuals/Malibu/Forth_Primer.pdf

Word Description Stack

?<module-name>
e.g. ?X5-G12

Display default module-specific wordset (--)

l@ Fetch from logic space. Read 32-bit FPGA register contents. (addr -- data)

l! Store to logic space. Write 32-bit FPGA register contents. (data addr --)

p@ Fetch from pci space (addr -- data)

p! Store to pci space (data addr --)

d@ Fetch from sub-device space. Read 32-bit value from specified address
in specified device. Used to access registers stored within peripheral
devices attached to the FPGA via I2C, SPI or other buses.

(addr dev -- data)

d! Store to sub-device space. Write 32-bit value to specified address in
specified device. Used to access registers stored within peripheral
devices attached to the FPGA via I2C, SPI or other buses.

(data addr dev --)

Pll, Vcxo, RefVcxo,
Adc0, Adc1

Module-specific constants which name the device values used with d@
and d!. Specific constants available vary by module.

(-- index)

dFreq Set sample clock frequency (f:freq dev --)

dFreqActual Report actual sample clock frequency (dev -- f:freq)

Ficl words may be executed interactively at the Ficl command line, or they may be typed into a standard disk file for
subsequent re-use. The Ficl word load may be used to interpret the entire contents of a file, exactly as though the contents
of the file were typed into the Ficl command line. Usage is

load <filename>

Note that Ficl word definitions may also be added to files, to create utility functions containing loops, register displays and
myriad other useful diagnostics.

For example, the word .regs below will create a hex dump of the contents of user FPGA logic registers 0..10:

: .regs (-–) base @ hex 10 0 do .” Reg: 0x” i . .” =” i l@ . cr loop base ! ;

Once this definition has been added to the dictionary, it may be executed by typing:

.regs

at the Ficl command line. Or, this word could be used within other words to create a more sophisticated diagnostic.

Stream Support

A handful of Ficl words are executed automatically at strategic times during data flow to accommodate automated
initialization, finalization or diagnostic display.

Malibu Library User's Manual 130

Word When Executed by Malibu Stack

OnStreamConfigure Prior to register configuration in preparation for
streaming

(--)

OnBeforeStreamStart Before assertion of FPGA RUN bit. Contents of
all FPGA registers have been reapplied.

(--)

OnAfterStreamStart After assertion of FPGA RUN bit. Streaming is
underway.

(--)

OnBeforeStreamStop Before deassertion of FPGA RUN bit as
streaming is about to terminate

(--)

OnAfterStreamStop After deassertion of FPGA RUN bit after
streaming terminates

(--)

Words added to the dictionary named as listed above will be executed automatically at the time specified during data
streaming. This can be be used to initialize application-specific registers, display state or any other diagnostic function.

Malibu Library User's Manual 131

