


Avoid Bottlenecks
Using PCI Express-Based

Embedded Systems

Implementing efficient data movement is a critical element in high-performance embedded systems, and
the advent of PCI Express has presented us with some very effective approaches to optimize data flow.
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“A good friend will help you move, but a trusted friend will help you move the bodies.” Fortunately, I haven’t 
any direct experience to substantiate this old quip, but I chuckle at the premise. Embedded system architects 
occasionally need help moving as well, and for this we turn to our trusted friends DMA, bus-mastering, shared 
memory and coprocessing. 

Embedded systems are ubiquitous, used within communications installations, automobiles, cell phones and 
even table saws. Most systems interact with their environment through transducers connected to analog-to-
digital converters (ADCs/DACs), communications ports such as USB and Ethernet, and myriad other special-
ized devices. It is commonplace for such devices to generate or consume gigabytes per second, well beyond the 
capacity of a typical embedded processor to manipulate directly. Usually, this problem is addressed by including 
some form of coprocessing or direct memory access (DMA) within the embedded system.

For example, consider the narrowband receiver inside a software radio depicted in Figure 1. A wideband IF 
signal is digitized at 250 MHz, with 16-bit resolution, down-converting to produce 12.5 MHz of narrowband 
data. This operation might be implemented using a COTS device such as the TI GC6016 DDC or using custom 
VHDL firmware within an FPGA, such as a Xilinx Virtex 6. Regardless, the output data rate is substantially 
reduced—the complex, 16-bit output data samples are produced at 12.5 MHz, equivalent to just 50 Mbyte/s. 
However, even this mitigated rate may represent a substantial burden to an embedded processor. It might be 
necessary to implement a decoder to bring the signal to baseband, reducing the data rate by another order of 
magnitude before that rate is suitable for the embedded controller. In this scenario, the efficiency of data flow is 
improved by delegating the per-sample manipulations to the coprocessor, reducing the bandwidth from 500 to 
just 5 Mbyte/s. The bandwidth of the embedded computer’s bus is preserved by reducing its load. 

	 Figure 1
	 Digital Down Converter implementation.

But in some situations, coprocessing is not feasible or desirable. Implementing the necessary coprocessing 
functionality might exceed available FPGA resources. Or, such computations may be deferred or implemented 
on another system in non-real-time. For example, it is commonplace to capture wideband recordings of signals 
to disk, subsequently analyzing the waveforms in environments such as Matlab. Multipath, Doppler fading and 
other impairments on a cellular transmission might be captured by a portable 250 MHz IF recorder mounted in 
the trunk of a car driving throughout a city. These real-world signals could subsequently be used to stimulate 
prototype receiver equipment in a lab. What architecture is required to implement such a system at these rates? 
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Direct Memory Access (DMA) is a feature of many embedded systems that allows I/O subsystems to access 
memory-mapped peripherals independently from the embedded CPU, microcontroller or digital signal pro-
cessor. Once initialized, a DMA controller autonomously reads from source memory addresses and writes to 
destination addresses. Typically, DMA controllers initiate data movement when signaled by an external stimulus 
signal, such as an FIFO level signal indicating that data can be read or written to a device. Many modern DMA 
controllers provide substantial addressing flexibility, allowing transactions to/from fixed addresses (memory 
mapped FIFOs), address ranges (shared memory) and even non-contiguous ranges (image buffers). Since DMA 
responds to the stimulus signal independently from the CPU and is granted higher priority than the CPU in ac-
cessing the bus, DMA transactions are a mainstay for reliable, deterministic data flow in real-time applications. 

Nearly all desktop PCs and many embedded systems now incorporate PCI Express (PCIe) as the communica-
tions bus between I/O cards and host system memory. PCIe is a standard, point-to-point serial implementation 
that has displaced the earlier (parallel) PCI standard that was a dominant expansion card interface used until 
circa 2005. PCIe gained market acceptance very rapidly, primarily due to the signal routing density intrinsic to 
its serial implementation and its correspondingly scalable performance. PCIe traffic flows in lanes, each imple-
mented as a matched pair of differential signals implementing a bidirectional data path. 

Data flow is 8/10B encoded at a bit rate of 2.5 Gbit/s in the PCIe v1 standard, providing a rated 200 Mbyte/s for 
each lane. PCIe v2-compliant hardware doubles that bit rate to 5.0 Gbit/s, doubling throughput. To support high 
bandwidth devices, lanes may be bonded to improve throughput. For example, graphics adapters in desktop PCs 
often bond sixteen v2-compliant lanes to establish an effective 6400 Mbyte/s bidirectional link between system 
memory and the GPU (graphics processor unit). 

Use of PCIe is not restricted to the desktop form factor. VITA Standard 42 combines the popular PCI Mezza-
nine Card (PMC) format with the PCIe serial fabric technology to support standardized PCIe peripheral cards in 
embedded applications, known as XMC modules (Figure 2). Likewise, VITA Standard 46 supports use of PCIe 
within VPX platforms, the popular rugged successor to VME (Figure 3). 

	 Figure 2								        Figure 3
	 XMC Module with FPGA and Analog I/O.				    Embedded VPX System.

To effect a transfer, a PCIe device first arbitrates with the host processor(s) for memory bus ownership. Once 
granted, the master writes or reads small packets of 32- or 64-bit words to another memory-mapped peripheral, 
the slave. Packet sizes are governed by cache memories within the PCIe chipset. These are typically less than 
2K words in size, although they are frequently much smaller on the chipsets found in embedded systems. The 
slave device accepts or rejects the packet by emitting an acknowledgement or negative acknowledgement, re-
spectively. This protocol allows for flow control if data is being sourced too rapidly for the slave by the master. 
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PCIe cards typically implement embedded data move-
ment engines that implement bus mastering—a spe-
cialized form of DMA transfer. Bus mastering offers 
several advantages compared to using a legacy DMA 
controller. While both DMA and bus mastering ar-
bitrate with the host processor for access to the host 
memory bus (exhibiting similar transaction latency), 
each DMA transaction involves both a bus read and 
write. However, a bus mastering peripheral can ac-
cess onboard I/O devices via a local bus, so a transfer 
to system memory or another memory-mapped PCIe 
peripheral requires only a bus write operation, effec-
tively doubling the efficiency of DMA. 

Bus mastering transfers occur between a PCIe device 
and another memory-mapped peripheral.  But the lat-
ter need not be memory, per se. For instance, one PCIe 
device may transfer directly to another, bypassing 
host system memory. PCIe systems can incorporate 
switch devices that allow multiple attached devices to 
communicate locally, mitigating traffic on the primary 
system bus. Traffic between such devices behaves as 
if interconnected directly. Switch devices are typi-
cally configured either statically from flash ROM 
during system initialization or dynamically by the host 
processor during OS initialization. Once configured, 
even persistent PCIe traffic between local devices will 
consume no system bus bandwidth. 

The high-speed cellular data storage application ref-
erenced earlier seems a suitable candidate to exploit 
inter-device PCIe communications. One would assume 
that a high-speed PCIe digitizer could bus master 
directly to a RAID disk controller to implement wide-
band recording, without loading the host system bus 
or processor. While local, inter-board communications 
is exploited frequently in VPX platforms to share data 
between two FPGA cards, it is rarely feasible when 
mixing PCIe devices from multiple vendors. Most 
RAID controllers, for instance, are closed designs pro-
vided with drivers only for popular operating systems 
such as Windows or Linux. These drivers perform all 
low-level access to the array and are the exclusive ve-
hicle for interacting with the array. The manufacturers 
do not document or support use of the RAID control-
ler as a slave device. 

The zero work solution is to accept the implicit inef-
ficiency of a single bus mastering transfer from the 
source PCIe device to host system memory. If acquir-

ing at a relatively modest rate like 250 MHz from 16-
bit ADC devices, this represents a load of only 1000 
Mbyte/s on the system bus (500 Mbyte/s for the BM 
from the acquisition device to system memory, and 
another 500 Mbyte/s when the RAID controller BMs 
from system memory to the RAID array), which is 
well within the available bandwidth of modern moth-
erboards and RAID subsystems. 

But if the data rate escalates, this approach becomes 
increasingly unattractive. A typical i7-based embedded 
system will provide approximately 6-8 Gbyte/s of ag-
gregate system memory bandwidth. If the acquisition 
card samples at 2 Gsamples/s at 12-bit resolution with 
no packing, the system bus utilization becomes an 
unmanageable 8000 Mbyte/s for the real-time storage 
to the array. Interestingly, CPU utilization is nearly 
zero—the CPU is involved only occasionally to initi-
ate a write of data to the array when the acquisition 
device completes each bus mastering transfer. But the 
miniscule CPU usage is irrelevant in this application; 
We’re bus-bound. 

To address this problem, it is necessary to redesign the 
interface on the acquisition device. Instead of using 
a bus mastering interface in which the module au-
tonomously delivers data into host system memory—
consuming host memory bus bandwidth—available 
memory on the acquisition card must be mapped as 
shared memory. Acquired samples from the ADC on 
the card are stored into consecutive memory loca-
tions in onboard memory, similar to a FIFO. But these 
memory locations are also mapped into the memory 
space of the host, and appear as a memory bank ad-
dressable by the host CPU and the RAID controller. 
The key advantage of this approach is that during 
acquisition, samples will appear in the memory space 
of the read-only memory, without requiring a memory 
bus arbitration or write cycles. Effectively, the data 
transfer is free. Of course, when the RAID controller 
reads from this memory area, the bus will be utilized 
normally and a fraction of the available bus bandwidth 
will be consumed. However, the utilization is halved, 
compared to the bus-master scenario described earlier. 

On modern acquisition cards that employ reprogram-
mable FPGAs, this sort of repurposing is relatively 
easy to implement. What a difference compared to the 
cut and jumper world in which we used to live! 


