

FrameWork Logic and MATLAB Board Support Package

Innovative Integration

11/12/07

FrameWork Logic and MATLAB Products

- Innovative Integration offers
 - FrameWork Logic for traditional VHDL design using Xilinx ISE software
 - Support for MATLAB/Simulink and Xilinx System Generator based designs
 - Extensive II VHDL IP cores
- Results
 - Rapid application development
 - Smooth integration of custom logic in II Framework
 - Real time testing and debugging of algorithms using ChipScope Pro and MATLAB/Simulink

MATLAB Board Support Package

Bridge to the Real World - System Generator/Simulink

boards

Features

- Bit true, cycle true
- Simulation => Validation => Implementation in Simulink environment
- Hardware-in-the-loop \bullet

Start Your Design in Simulink

Xilinx System Generator

System Modeling in Simulink

FIR Compiler

System Modeling in Simulink

- Visualized debugging tools
- Reliable IP cores
- No multiple clock domain issues

FIR Compiler

Cores from Various Sources

Design Flow in Simulink

Design Flow Comparison

Source: DSP Magazine, May 2006 p.37

II MATLAB BSP

Advantage

- Save more than 80% time of hand-coding VHDL
 System Generator : 45.5 hrs
 Traditional VHDL : 782 hrs
 Reason: clocking, defect discovery, and component interfaces
- Graphical interfaces for easy project construction
- Visual tools for easy debugging
- Fast simulation ability (Support Modelsim and Chipscope)
- Free

Now support: Quadia, Quixote, PMC UWB, TX, DR, P25M, X3 Family

Source: DSP Magazine, May 2006 p.40

MATLAB BSP Reduces Verification Time

Docian	Simulation Time (Seconds)		
Design	Software	HW Co-Sim	Increase
Beamformer	113	2.5	45X
OFDM BER Test	742	.75	989X
DUC CFR	731	23	32X
Color Space Converter	277	4	69x
Video Scalar	10422	92	113X

Co-Sim Integrates MATLAB Design Tools with Hardware

- Access the hardware *DIRECTLY* from MATLAB
- Use powerful MATLAB tools for DSP design and test
- Xilinx System Generator tools link Simulink to the hardware through the BSP
- Hardware Co-simulation radically improves system design and test by reducing design and debug effort

- -Step 1. Start your design in Simulink
- -Step 2. Attach II blocks to the design
- -Step 3. Hardware co-simulation
- -Step 4. Implementation

PMC UWB Block Diagram

II PMC UWB Library

Hardware Co-simulation

- Bit true, cycle true, hardware-in-the-loop simulation
- Fast simulation with infrastructures on the board

Compilation Flow

Demo

Build Your Design

PMC UWB Block Diagram

NEW Feature – System Configuration Panel

- Easy configuration
- No software needed
- Capability of changing settings on the fly

A Innovative

🙀 Function Block Parameters: System Configuration

UWB Simulink Block (mask)-

This block sets up the command registers in Matlab. When "Enable Configuration" is '1', all prameters are provided by Matlab. When "Enable Configuration" is '0', the parameters are from the host. Four 32 bit host controlled registers 13, 20, 21, and 22 can be monitored inside Matlab. Three 32 bit status ports provide information of user's design to the host. Please refer to Registers section in FrameWork Logic User Guide for more information.

Parameters
Run
ADC0 Channel Enable
ADC0 Clock Select PLL
ADC0 Desitinations PCI
ADC0 Gain (0 - 2)
1
ADC0 Offset (2 ⁰ - 2 ¹⁵)
0
ADC1 Channel Enable
ADC1 Clock Select PLL
ADC1 Desitinations PCI
ADC1 Gain (0 - 2)
1
ADC1 Offset (2 ⁰ - 2 ¹⁵)
0
Bypass VCO
Xtal Sel Xtal
PLL Feedback Divider Ratio M (1 - 512)
28
PLL Output Divider Ratio N N=4
Sync Clock Select ACLK
Divider Clock Select ACLK
Divider Ratio D=1
OK Cancel Help Apply

Integrating MATLAB Core into FrameWork Logic

Design in MATLAB/Simulink

FrameWork VHDL Logic Design

II FrameWork Logic

- Framework Logic Features
 - Comprehensive board support packages in MATLAB and VHDL for FPGA signal processing development
 - Hardware interface layer design structure allows rapid integration of application specific code
 - Designed to support real time signal processing and data acquisition
- Complete end-to-end simulation testbench using ModelSim
- Reference designs illustrating hardware use
 - Saves time by providing a simplified access to the hardware and data stream
 - Supported by software for control, data logging and signal generation
 - Get you off to a quick start
- → Reduced design, test and verification time

Innovative IP Core Library

Hardware Control Cores	Function
Virtual FIFO	Implements a FIFO using DDR DRAM memory buffer
Multi-queue FIFO	Implements multiple FIFO queues in DDR DRAM memory buffer
Pattern Generator	Implements a dynamically loadable pattern generator for DDR DRAM capable of >500 MB/s sustained operation
SRAM Controller	Provides high speed synchronous SRAM interface
Packetizer	Packetizes data for system interfaces
Deframer	Unpacketizes data from system interface
J4 Link	Implements a data link over PMC J4 connection to base cards capable of >350 MB/s
SFP Data link	Provides an SFP data link interface (Quadia)
RIO Data Link	Provides a RIO link interface between FPGAs with flow control
DSP interfaces	Interface cores for standard TI DSPs ('6416, '6713)
DDC Interface	Interface to TI GC5016 quad-channel DDC devices
Quadrature Decoding	Interface to industry-standard quadrature encoders
Sigma Delta DAC	Sigma Delta modulator and controls implements a DAC function. External analog filter is required.
Triggering Controls	Snapshots, external triggering, decimation

DSP Cores	Function
Digital Downconversion	20 channels DDC operating at up to 208 MHz
Spectral Inverter	Real-time spectral inversion
FFT	Radix-2 FFT, 32 to 8K record lengths
FIR Filters	Support via Xilinx Corelib and Matlab. The number of taps that may be implement for real time operation depends on sample rate, logic utilization and logic clock rate.
CIC Filters	Support via Xilinx Corelib and Matlab.

Xilinx IP Cores

Example: FIR Filter in UWB

- Two 12-bit 250 MSPS AD converters
- Virtex-II Pro FPGA, 4 Million gates
- 64MB SDRAM plus 2MB SRAM for FPGA
- Sample clocks: dual external or on-board PLL

- Software Defined Radio (SDR)
- Electronic Warfare
- Advanced RADAR
- Telecom IP development

VHDL Design Flow

Step 1 : Define system requirements and architecture

- Define DSP, data analysis, triggering and system control functions
- Define accuracy and dynamic range requirements
- Identify real-time constraints such as data rates and processing rates
- Identify system data buffering requirements
- Estimate logic usage

Step 2 – Create cores and logic

- Create new logic and cores using Xilinx Core Generator, MATLB, or VHDL
- Simulate and verify core functionality

Step 3 – Add functions to FrameWork Logic

Step 4 - Simulation

- Simulate the logic using • testbench
- FrameWork Logic provides • complete testbench with models for A/D, memories, etc
- Saves time before debug! ullet

4 >

Xilinx ISE Environment

Step 5: Compile and Download Logic

Software Defined Radio

Software Defined Radio

- Wireless communication issue today
 - Compatibility & Spectrum usage
- Purpose
 - Produce a radio that can receive and transmit a new form of radio protocol by running new software
- Key
 - Software- programmable hardware

Digital Down Converter (DDC)

Our DDC Solution

- MATLAB Simulink design for FPGA
- Supports up to 208 MSPS with >90 dB dynamic range
- 10 kHz tuning resolution

MATLAB Simulation (Bit True, Cycle True)

II Digital Receiver (SDR)

Software Defined Radio Results

- SDR implemented on Quadia and UWB
- Example results shown for 97.5MHz input, 130 MSPS sampling, channels tuned to 97.5+n*10KHz

PMC UWB: 2x 250 MSPS A/D + VP40 FPGA

II SDR Support

- Logic designs and supporting software are available for application development
- Full application note available

