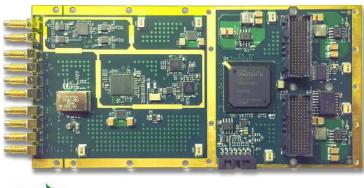


Precision Sampling Rate Generation and Triggering Controls with High Precision Reference

FEATURES


- · Clock generation and distribution
- Four single-ended clock outputs*
- · External clock/reference input
- Low noise: 135 fs RMS jitter -160 dBc/Hz noise floor (fc=100 MHz)
- · Programmable 70.06 to 3080 MHz range
- Onboard 10 MHz, 250 ppb oscilltor or external frequency reference
- · Four single-ended trigger outputs
- · Supports J16 triggers and local bus
- · External trigger input
- XMC Module (75x150 mm)
- PCI Express (VITA 42.3)

APPLICATIONS

- Sample clock generation for high speed data acquisition applications
- Sample clock generation for multi-channel systems
- Synchronization for distributed systems
- Timing Generation

SOFTWARE

- Windows/Linux Drivers
- C++ Host Tools

V 1 3 1/29/16

DESCRIPTION

Atropos is an XMC I/O module with precision, low-noise clock generation and distribution for data acquisition and communications timing applications. The module has four output clocks and four output triggers as well as a clock/reference input and a trigger input. The Atropos can also act as a system timing card in multi-board XMC, FMC or PCIe -based systems, providing the reference clock, sample clocks and triggering.

In the sample clock generation mode, Atropos can generate clocks from 70.06 to 3080 MHz. All clock outputs may be referenced to an on-card 280 ppb temperature-compensated oscillator, or an external clock input.

The PLL circuit is fully programmable, providing extremely low noise clocks with 135 fs RMS jitter, -160 dBc/Hz noise floor (fc=100 MHz). The output clocks are phase aligned to within 100 ps. Each output clock is a 1 to 32 subdivision of the external clock or second-stage PLL, which may programmatically operate in either the 2370-2630 or 2920-3080 MHz range.

Windows and Linux applications are provided that are used to configure and control all Atropos features.

Software tools for host development include C++ libraries and drivers for Windows and Linux.

* Differential version available with two clock and two trigger outputs

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Innovative Integration products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Innovative Integration standard warranty. Production processing does not necessarily include testing of all parameters.

This electronics assembly can be damaged by ESD. Innovative Integration recommends that all electronic assemblies and components circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

Product	Part Number	Description
	80340-0	PCI Express XMC module with four high-speed single-ended LVPECL clock and synchronous trigger outputs (70-3080 MHz), external trigger and clock inputs, XMC clock support and 280 ppb reference.
Atropos	80340-1	PCI Express XMC module with two high-speed differential LVPECL clock and synchronous trigger outputs (70-3080 MHz), external trigger and clock inputs, XMC clock support and 280 ppb reference.
Cables		
SSMC to BNC cable	67156	SSMC to BNC male coax cable, 1m
Adapters		
XMC-PCIe x1 Adapter	80172	PCI Express Carrier card for XMC PCI Express modules, x1 lanes
XMC-PCI Adapter	80167	PCI Carrier card for XMC PCI Express modules, 64-bit PCI-X
XMC-cPCI Adapter	80207	3U Compact PCI Carrier card for XMC PCI Express modules, 64-bit PCI-X
XMC-Cabled PCIe Adapter	90181	Cabled PCI Express Carrier card for XMC PCI Express modules, single-lane.
Embedded PC Host		
<u>eInstrumentPC</u> embedded <u>PC XMC host</u>	90200	Embedded PC with support for two XMC modules; Celeron, Core2Duo or Penryn CPU; Windows or Linux

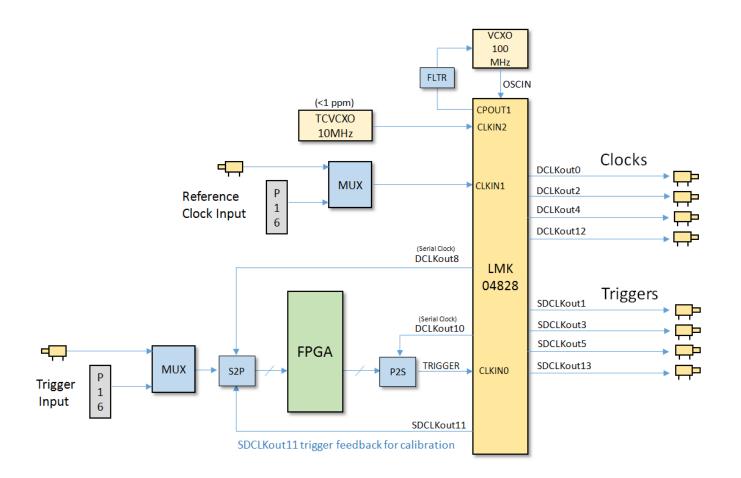


Figure 1. Block Diagram

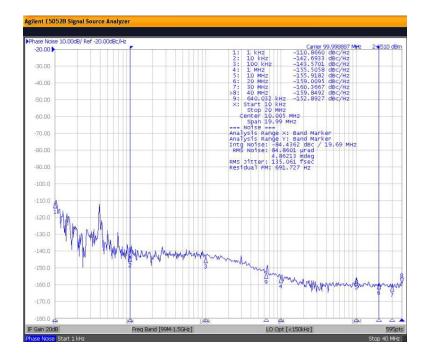
Standard Features

Clock Generation					
Clock Sources	Programmable PLL : TI LMK04828				
	External : Sine/Square Input				
PLL	Internal : 10MHz (specs below)				
References	External : same as external clock				
PLL Frequency Range	74.06MHz - 3080MHz				
PLL Tuning Resolution	50KHz				

Clock Outputs	
Outracta	Single Ended : 4
Outputs	Differential : 2
Output Range	800 mVp-p (single-ended), 1.6V p-p differential, min for 50 ohm load
Output Type	LVPECL (single ended / differential)
Output Impedance	50 ohm
Connectors	SSMC female

Triggers					
Modes	Continuous or N-point frame				
Sources	Internal (software) External (SSMC / P16)				
Output trigger rate	250 MHz max				
Frame Sizes	4 to 16M points				
External Inputs Software selectable (AC coupled) Note : only 1 source can be selected)	SSMC : Single-ended LVPECL : 800mV p-p LVDS : 400mV p-p LVCMOS : 3.3V p-p P16 : Differential LVPECL				
Input trigger rise/fall time	100 ps min				
	Single Ended : 4				
Outputs	Differential : 2				
Output Range	800 mVp-p (single-ended), 1.6V p-p differential, min for 50 ohm load				
Output Type	LVPECL (single ended / differential)				
Output Impedance	50 ohm				
Output rise/fall time	< 100 ps typical, depending on loading				

Internal PLL Reference						
Frequency 10 MHz						
Stability	250 ppb					
Accuracy	Calibrated to 1 ppm					
Noise	1 Hz: -71 dBc/Hz 10 Hz: -93 dBc/Hz 100 Hz: -117 dBc/Hz 1 KHz: -138 dBc/Hz 10 KHz: -152 dBc/Hz 100 KHz: -155 dBc/Hz					


Clock / Reference Inputs						
	P16 : Differential LVPECL					
Inputs	SSMC : Single-ended					
(AC coupled)	LVPECL : 800mV p-p					
	LVDS : 400mV p-p					
	LVCMOS : 3.3V p-p					
Input Impedance	50 ohm					
Frequency	10KHz - 750MHz					

ABSOLUTE MAXIMUM RATINGS

Exposure to conditions exceeding these ratings may cause damage!

Parameter	Min	Max	Units	Conditions
Supply Voltage, 3.3V to GND	+3.0	+3.6	V	
Clk / Trigger Input Voltage	0	3.6	V	AC Coupled
Operating Temperature	0	70	С	Non-condensing, forced air cooling required
Storage Temperature	-65	+150	С	
ESD Rating	-	1k	V	Human Body Model
Vibration	-	5	g	9-200 Hz, Class 3.3 per ETSI EN 300 019-1-3 V2.1.2 (2003-04)
Shock	-	40	g peak	Class 3.3 per ETSI EN 300 019-1-3 V2.1.2 (2003-04)
RECOMMENDED OPERATING CONDITI	ONS			
Parameter	Min	Тур	Max	Units
Supply Voltage	+3.15	+3.3	+3.45	V
Operating Temperature	0		60	С

ELECTRICAL CHARACTERIST	cs					
Over recommended operating free-air temperature	e range at 0°C to +60°C, ur	less otherwi	se noted.			
Parameter	arameter Typ Units Notes					
Output Frequency Range 70.06 - 3		MHz				
Clock Jitter	91	fs	Target specification with output filter			
Accuracy	1	ppm	After calibration			
Stability	250	ppb				
Power Consumption	5.8	W	1.76A from 3.3V with 4 outputs @ 400 MHz			

6 of 12

Architecture and Features

The Atropos module is a PCI Express XMC module designed to support high speed digitizing systems with multiple channels. The card provides extremely low noise clock signals that are required for accurate digitizing of high speed analog signals in systems such as RF/IF front ends, RADAR systems and high speed pulse digitizing.

Distributed systems are supported using an external reference, often supplied via GPS or IEEE1588, allowing systems to be tightly locked to world time without physically sharing any signals.

Clock Generation

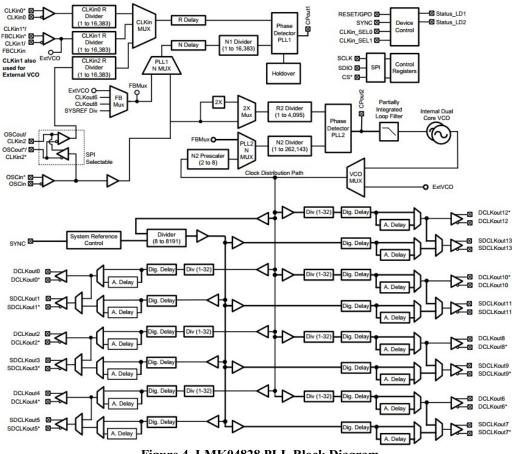


Figure 4. LMK04828 PLL Block Diagram

Atropos features a flexible sample rate generation architecture built around a dual stage PLL with tunable VCXO. The PLLs and VCXOs are fully programmable with an output range from 70.06 to 3080 MHz as shown in the block diagram below.

The PLL reference inputs are also software programmable and provide selection between a 10 MHz reference oscillator, or an external input. The reference oscillator is offered with 0.25 ppm temp-stability rating. The references may be divided before the PLL by values from 1 to 16383 (not all numbers inclusive) so that high frequency external reference inputs can be used.

Clock Outputs

There are four clock outputs on the front panel and one J16 XMC clocks. All clock outputs may be synchronous or individually subdivided from the PLL or external clock, or the reference clock.

Triggering

Atropos has four trigger outputs to the front panel and an triggers for J16. The triggers are programmable for framed mode, used for data snapshots, or continuous mode. The trigger can be fired from software, external input, or GPS time. All trigger outputs are synchronous.

Trigger Mode	Continuous	Trigger is true on next rising edge of the sample clock until source is deasserted				
	Framed	Once fired, the trigger is true for N data points				

PLL Range Limitations

The figure below shows the ranges of frequencies available for each divider ratio applied to the VCO ranges.

The IC has two VCO's, with slightly different frequency ranges, shown at the top of each column. The table shows the frequency ranges resulting from each divider ratio applied to the VCO's. In addition there are indicators of how to shift to the next range to get increasing frequencies (arrow indicates which VCO, number indicates rows to go up or down). The yellow shaded cells show where the next higher available frequency leaves a hole. The red shaded cells show ranges that would not typically be used because the range is completely contained within a range available by using the other VCO. It is possible that the red ranges might be used if there are idiosyncrasies that cause unusual "sweet spots".

For lower frequencies, it appears that VCO0 would be used.

The IC also has a second "System Reference" frequency path that allows higher divider ratios (8 to 8191) which allow lower frequencies to be generated. The last row of cells show the frequencies that result with this divider set at 8191.

CO Range MHz	2370.000	2630.000	2920.000	3080.000		1840.000	1970.000		2440.000	2505.000	
Divider ratio											
1	2370.000	2630.000 >	2920.000	3080.000		1840.000	1970.000	>	2440.000	2505.000	
2	1185.000	1315.000 >	1460.000	1540.000	<1	920.000	985.000	>	1220.000	1252.500	<1
3	790.000	876.667 >	973.333	1026.667	<1	613.333	656.667	>	813.333	835.000	<1
4	592.500	657.500 >	730.000	770.000	<1	460.000	492.500 -	1>	610.000	626.250	<1
5	474.000	526.000 >	584.000	616.000	<1	368.000	394.000	-1>	488.000	501.000	^
6	395.000	438.333 -1>	486.667	513.333	<1	306.667	328.333	-1>	406.667	417.500	<2
7	338.571	375.714 -1>	417.143	440.000	<2	262.857	281.429	-1>	348.571	357.857	<2
8	296.250	328.750 -1>	365.000	385.000	<2	230.000	246.250	-2>	305.000	313.125	<2
9	263.333	292.222 -1>	324.444	342.222	<2	204.444	218.889	-2>	271.111	278.333	
10	237.000	263.000 ^	292.000	308.000	<2	184.000	197.000	-2>	244.000	250.500	<3
11	215.455	239.091 ^	265.455	280.000		167.273	179.091	٨	221.818	227.727	<3
12	197.500	219.167 ^	243.333	256.667		153.333	164.167	-3>	203.333	208.750	<3
13	182.308	202.308 ^	224.615	236.923		141.538	151.538	-3>	187.692	192.692	
14	169.286	187.857 ^	208.571	220.000	-	131.429	140.714	A.:	174.286	178.929	
15	158.000	175.333 ^	194.667	205.333		122.667	131.333 -	-4>	162.667	167.000	<4
16	148.125	164.375 ^	182.500	192.500		115.000	123.125	•	152.500	156.563	<4
17	139.412	154.706 ^	171.765	181.176		108.235	115.882	n	143.529	147.353	
18	131.667	146.111 ^	162.222	171.111		102.222	109.444	•	135.556	139.167	
19	124.737	138.421 ^	153.684	162.105		96.842	103.684	n	128.421	131.842	<5
20	118.500	131.500 ^	146.000	154.000	<4	92.000	98.500	^	122.000	125.250	
21	112.857	125.238 ^	139.048	146.667	٨	87.619	93.810	n	116.190	119.286	<5
22	107.727	119.545 ^	132.727	140.000	A.	83.636	89.545	•	110.909	113.864	<5
23	103.043	114.348 ^	126.957	133.913	٨	80.000	85.652	n	106.087	108.913	<5
24	98.750	109.583 ^	121.667	128.333	Λ.	76.667	82.083	•	101.667	104.375	<6
25	94.800	105.200 ^	116.800	123.200	٨	73.600	78.800	n	97.600	100.200	<6
26	91.154	101.154 ^	112.308	118.462	A.	70.769	75.769	۰.	93.846	96.346	<6
27	87.778	97.407 ^	108.148	114.074	٨	68.148	72.963	٨	90.370	92.778	<7
28	84.643	93.929 ^	104.286	110.000	^	65.714	70.357	^	87.143	89.464	<7
29	81.724	90.690 ^	100.690	106.207	^	63.448	67.931	n	84.138	86.379	<7
30	79.000	87.667 ^	97.333	102.667	A.	61.333	65.667	^ ;	81.333	83.500	<7
31	76.452	84.839 ^	94.194	99.355	~	59.355	63.548	n	78.710	80.806	<8
32	74.063	82.188 ^	91.250	96.250	^	57.500	61.563	A.:	76.250	78.281	<8
requencies above	are available	at DCLKout or SDCLKout									
Reference Divider	allows lower	frequencies, down to frequ	encies shown	(at SDCLKou	t only)						
8191	0.289	0.321	0.356	0.376		0.225	0.241		0.298	0.306	

Distributed Data Acquisition

The external reference is used for distributed applications so that sample clocks can be synchronous to allow creation of wide channel count applications. Typically, a GPS reference clock is used if systems are located in diverse geographic locations whereas an IEEE1588 reference is used if the system elements are connected via a dedicated local network.

Software Tools

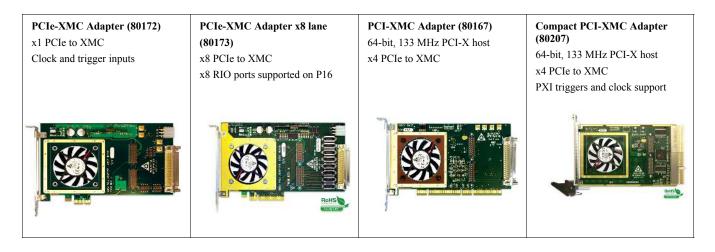
Atropos can be easily configured using the supplied example program. The application provides a control panel interface for configuring the PLL and clock distribution features including reference source, output frequency, triggering modes, and XMC timing. No custom development is necessary for most applications. Configurations may be saved for instant recall, or stored and recalled later.

Software development tools for Atropos provides comprehensive support including device drivers, card controls, and utilities that allow developers to be productive from the start. Software classes provide C^{++} developers a powerful, high-level interface to the card making the Atropos easier to integrate into applications.

Support for MS Visual C++ and GNU C++ is provided. Supported OS include Windows and Linux. For more information, the software tools User Guide and on-line help may be downloaded.

Applications Information

Cables


The Atropos module uses coaxial cable assemblies for the IO. The mating cables have an SSMC male connector and 50 ohm characteristic impedance for best signal quality.

XMC Adapter Cards

XMC modules can be used in standard desktop system or compact PCI/PXI using a XMC adapter card. An auxiliary power connector to the PCI Express adapters provides additional power capability for XMC modules when the slot is unable to provide sufficient power. The adapter cards allow the XMC modules to be used in any PCIe or PCI system.

Atropos uses the auxiliary P16 connector to provide an additional trigger and clock input, if provided by the XMC adapter. Like the SSMC connector inputs, internal biasing tolerates unconnected inputs from P16.

Refer to the Atropos Hardware Manual for complete P15/P16 pinouts.

Applications that need remote or portable IO can use either the eInstrument PC or eInstrument Node with X3 modules.

eInstrument PC with Dual PCI Express XMC Modules (90200)

Windows/Linux embedded PC Powerful i7 CPU e 8x USB, GbE, cable PCIe, VGA High speed x8 interconnect between modules GPS disciplined, programmable sample clocks and triggers to XMCs 800 MB/s, 2 TB datalogger 12V operation

eInstrument DAQ Node – Remote IO using cabled PCI Express (90181) PCI Express system expansion Up to 7 meter cable electrically isolated from host computer software transparent

IMPORTANT NOTICES

Innovative Integration Incorporated reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Innovative Integration's terms and conditions of sale supplied at the time of order acknowledgment.

Innovative Integration warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Innovative Integration's standard warranty. Testing and other quality control techniques are used to the extent Innovative Integration deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Innovative Integration assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Innovative Integration products. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Innovative Integration does not warrant or represent that any license, either express or implied, is granted under any Innovative Integration patent right, copyright, mask work right, or other Innovative Integration intellectual property right relating to any combination, machine, or process in which Innovative Integration products or services are used. Information published by Innovative Integration regarding third-party products or services does not constitute a license from Innovative Integration to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Innovative Integration under the patents or other intellectual property of Innovative Integration.

Reproduction of information in Innovative Integration data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice.

Innovative Integration is not responsible or liable for such altered documentation. Resale of Innovative Integration products or services with statements different from or beyond the parameters stated by Innovative Integration for that product or service voids all express and any implied warranties for the associated Innovative Integration product or service and is an unfair and deceptive business practice. Innovative Integration is not responsible or liable for any such statements.

For further information on Innovative Integration products and support see our web site:

www.innovative-dsp.com

Mailing Address: Innovative Integration, Inc.

741 Flynn Rd, Camarillo, CA 93012

Copyright ©2015, Innovative Integration, Incorporated