## FEATURES

- Two A/D Inputs
- Up to $1250^{*}$ MSPS,14-bits each
- AC or DC coupled
- Two D/A Outputs
- Up to 1230* Msps,16-bits each 1x, to $2500^{*}$ Msps with 4 x interpolation
- AC or DC coupled
- Sample clocks and timing and controls
- Both front panel and FMC ports; DCLK, SYSCLK inputs, Trig/Sync/Monitor input/output, HW customizable
- Programmable PLL
- 25 MHz TCXO Reference
- Integrated with FMC triggers
- FMC module, VITA 57.1
- High Pin Count,
- JESD204B (subclass 1) Interfaces
- 2.5 V Vadj
- Power monitor and controls
- 10.4W typical (AC-coupled inputs)
- Conduction cooling supported
- Environmental ratings for -40 to 85 C 9 g RMS sine, $0.1 \mathrm{~g} 2 / \mathrm{Hz}$ random vibration


## APPLICATIONS

- Wireless Receiver and Transmitter
- LTE, WiMAX Physical Layer
- RADAR
- Medical Imaging
- High Speed Data Recording and Playback


## SOFTWARE

- MATLAB/VHDL FrameWork Logic
 : FMC RoHs


## DESCRIPTION

The FMC-1000 is a high speed digitizing and signal generation FMC I/O module featuring two 1000* or 1250* MSPS A/D channels and two 1230* MSPS D/A channels supported by sample clock and triggering features.

Analog I/O may be either AC or DC coupled. The sample clock is from either an ultra-low-jitter PLL or can be derived from external inputs. Multiple cards can be synchronized for sampling.

The FMC-1000 power consumption is less than 10.4 W for typical operation (AC coupled, 12W DC coupled). The module may be conduction cooled using provided thermal interfaces and a heat spreading plate. Ruggedization levels for wide-temperature operation from -40 to +85 C operation and $0.1 \mathrm{~g}^{2} / \mathrm{Hz}$ vibration. Conformal coating is available.

Support logic in VHDL is provided for integration with FPGA carrier cards. Specific support for Innovative carrier cards includes integration with Framework Logic tools that support VHDL/Verilog and Matlab developers. The Matlab BSP supports real-time hardware-in-the-loop development using the graphical block diagram Simulink environment with Xilinx System Generator for the FMC integrated with the FPGA carrier card.

Software tools for Innovative carrier cards include include C++ libraries and drivers for Windows and Linux. Application examples demonstrating the module features are provided.

* Sampling rates in an application depend on carrier and system design

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Innovative Integration products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Innovative Integration standard warranty. Production processing does not necessarily include testing of all parameters.
©2010 Innovative Integration • phone 805.578.4260 • fax 805.578.4225 • www.innovative-dsp.com

## FMC-1000

This electronics assembly can be damaged by ESD. Innovative Integration recommends that all electronic assemblies and components circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

## ORDERING INFORMATION

| Product | Part No. | Description |
| :---: | :---: | :---: |
| FMC-1000 | 80325-1-<ER> | FMC module with two 1000 MSPS 14 -bit A/D channels, two 1230 MSPS D/A channels, PLL and timing controls, AC- coupled A/D and D/As |
| FMC-1000 | 80325-2-<ER> | Like 80325-1 except A/Ds and D/As are DC-coupled |
| FMC-1000 | 80325-4-<ER> | FMC module with two 1250 MSPS 14-bit A/D channels, two 1230 MSPS D/As channel, PLL and timing controls, AC- coupled A/D and D/As |
| FMC-1000 | 80325-5-<ER> | Like 80325-4 except A/Ds and D/As are DC-coupled |
| Cables |  |  |
| SSMC to BNC cable | 67156 | IO cable with SSMC (male) to BNC (male), 1 meter |
| Carrier Cards |  |  |
| PEX6-COP | 80284-x-<ER> | Desktop/server PCI Express FPGA co-processor card with FMC site |
| Embedded Computer Hosts |  |  |
| ePC-K7 | 90502-x-<ER> | ePC-K7, I7 CPU, K325/410-T2 Commercial FPGA. Embedded PC with support for two FMC modules; i7 quad core COM Express Type 6 CPU; Windows/Linux drivers |
| Mini-K7 | 90600-x-<ER> | Mini-K7, I7 CPU, K325/410-T2 Commercial FPGA. Embedded PC with support for one FMC modules; Atom dual core COM Express Type 6 CPU; Windows/Linux drivers |

$<\mathrm{ER}>$ corresponds to the Environmental Rating, L0...L4.

| Physicals |  |
| :--- | :--- |
| Form Factor | FMC VITA 57.1 single-width |
| Size | $76.5 \times 69 \mathrm{~mm}$ |
| 10 mm mounting height |  |
| Weight | 180 g (approximate, contact factory <br> if critical to application) |
| Hazardous Materials | Lead-free and RoHS compliant |

## FMC-1000



## FMC-1000

## Operating Environment Ratings

Modules rated for operating environment temperature, shock and vibration are offered. The modules are qualified for wide temperature, vibration and shock to suit a variety of applications in each of the environmental ratings L0 through L4 and $100 \%$ tested for compliance.

| Environment Rating <ER> |  | L0 | L1 | L2 | L3 | L4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Environment |  | Office, controlled lab | Outdoor, stationary | Industrial | Vehicles | Military and heavy industry |
| Applications |  | Lab instruments, research | Outdoor monitoring and controls | Industrial applications with moderate vibration | Manned vehicles | Unmanned vehicles, missiles, oil and gas exploration |
| Cooling |  | Forced Air <br> 2 CFM | Forced Air <br> 2 CFM | Conduction | Conduction | Conduction |
| Operating Temperature |  | 0 to +50 C | -40 to +85 C | -20 to +65 C | -40 to +70 C | -40 to +85 C |
| Storage Temperature |  | -20 to +90 C | -40 to +100 C | -40 to +100 C | -40 to +100 C | -50 to +100 C |
| Vibration | Sine | - | - | $\begin{aligned} & 2 \mathrm{~g} \\ & 20-500 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 5 \mathrm{~g} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 10 \mathrm{~g} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$ |
|  | Random | - | - | $\begin{aligned} & 0.04 \mathrm{~g}^{2} / \mathrm{Hz} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 0.1 \mathrm{~g}^{2} / \mathrm{Hz} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$ | $\begin{aligned} & 0.1 \mathrm{~g}^{2} / \mathrm{Hz} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$ |
| Shock |  | - | - | $20 \mathrm{~g}, 11 \mathrm{~ms}$ | $30 \mathrm{~g}, 11 \mathrm{~ms}$ | $40 \mathrm{~g}, 11 \mathrm{~ms}$ |
| Humidity |  | $0 \text { to } 95 \% \text {, }$ non-condensing | 0 to 100\% | 0 to 100\% | 0 to 100\% | 0 to 100\% |
| Conformal coating |  |  | Conformal coating | Conformal coating, extended temperature range devices | Conformal coating, extended temperature range devices, Thermal conduction assembly | Conformal coating, extended temperature range devices, <br> Thermal conduction assembly, <br> Epoxy bonding for devices |
| Testing |  | Functional, <br> Temperature cycling | Functional, <br> Temperature cycling, <br> Wide temperature testing | Functional, <br> Temperature cycling, <br> Wide temperature testing <br> Vibration, Shock | Functional, <br> Temperature cycling, <br> Wide temperature testing <br> Vibration, Shock | Functional, <br> Testing per MIL-STD-810G for vibration, shock, temperature, humidity |

Minimum lot sizes and NRE charges may apply. Contact sales support for pricing and availability.

## FMC-1000

## Standard Features

| Analog Inputs |  |
| :--- | :--- |
| Inputs | 2 |
| Input Type | Single ended; AC or DC coupled |
| Nominal Input <br> Impedance | 50 ohm |
| A/D Device | Analog Devices AD9680BCPZ-1250 <br> (AD9680BCPZ-1000 for 1000 Msps models) |
| Resolution | 14 -bit |
| fadC* <br> Sample Rate | 300 Msps to 1000 Msps/1250 Msps <br> (each input, A/D IC data transfer rate is 2X) |
| Aperture Jitter | 55 fs typical |


| Analog Outputs |  |
| :--- | :--- |
| Outputs | 2 |
| Output Type | Single ended; AC or DC coupled |
| Nominal Output <br> Impedance | 50 ohm |
| D/A Device | Texas Instruments DAC38J82 |
| Resolution | 16 -bit |
| UpAC* <br> Update Rate <br> 100 to 1230 Msps (1x interpolation) <br> 100 to 2500 Msps (2x interpolation) <br> (each output, D/A IC data transfer rate is 2X) |  |
| Interpolation | 1 x to 16x <br> (11 clock cycle digital latency possible with no <br> interpolation (1x), FIFO off, mixer off, QNC <br> off, and inverse sinc off) |


| Clocks and Triggering |  |
| :---: | :---: |
| Clock Sources* | $\begin{aligned} & \text { LMK04828 dual loop PLL } \\ & 1^{\text {st }} \text { loop } 100 \mathrm{MHz} \text { TCVCXO standard } \\ & 2^{\text {nd }} \text { loop } 2 \text { VCOs on chip } \\ & \text { VCO0 from } 2370 \text { to } 2630 \mathrm{MHz} \\ & \text { VCO1 from } 2920 \text { to } 3080 \mathrm{MHz} \\ & 1000 \mathrm{MHz} \mathrm{Jitter}(\mathrm{VCO} 2 \text { at } 3 \mathrm{GHz} \text { with } \\ & \text { Output Divider }=3(1-32 \text { allowed })) \\ & \quad<100 \mathrm{fs}(10 \mathrm{kHz} \text { to } 20 \mathrm{MHz}) \\ & \quad<140 \mathrm{fs}(100 \mathrm{~Hz} \text { to } 150 \mathrm{MHz}) \end{aligned}$ |
|  | External (user supplied) |
| PLL Reference | External or 25 MHz TCXO <br> 25 MHz ref is $+/-250 \mathrm{ppb}-40$ to +85 C (used for FMC-1000 test and specification) |
| PLL Resolution* | $<12 \mathrm{kHz}$ typical tuning resolution (depends on PLL configuration) |
| Triggering | Software: Continuous or acquire N frames External: DC coupled Logic Input |
| Channel Clocking | All channels can be synchronized to (TBD) clock cycles |
| Multi-card Synchronization | External triggering and clock inputs may be used for synchronization, and sync signals can be set through the FMC PLL SPI control interface. |

*Possible clock and sample rates in an application can depend on hardware configuration, carrier and system design

## FMC-1000

| Analog Channels Crosstalk between... | AC coupled A/Ds | $<-52$ | dB | Measured on terminated victim channel, other $95 \%$ FS 30 MHz sine (preliminary, improvements likely) |
| :---: | :---: | :---: | :---: | :---: |
|  | DC coupled A/Ds | $<-90$ | dB | Measured on terminated victim channel, other $95 \%$ FS 30 MHz sine |
|  | D/As | $<-70$ | dB | Measured on terminated victim channel, other 95\% FS 30 MHz sine |
|  | A/D to/from D/A | $<-90$ | dB | Measured on terminated victim channel, other $95 \%$ FS 30 MHz sine |


| Power |  |  |
| :--- | :--- | :--- |
| All AC <br> coupled | Total | 10.4 W |
|  | 3.3 V | $6.9 \mathrm{~W}(2.1 \mathrm{~A})$ |
|  | 2.5 V <br> Vadj | $3.5 \mathrm{~W}(1.4 \mathrm{~A})$ |
| All DC <br> coupled | Total | 12 W |
|  | 3.3 V | $8.2 \mathrm{~W}(2.5 \mathrm{~A})$ |
|  | 2.5 V <br> Vadj | $3.8 \mathrm{~W}(1.52 \mathrm{~A})$ |
| Heat Sinking |  | Conduction cooling supported, <br> system level thermal design may <br> be required |

## FMC-1000

## AID ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range at $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, unless otherwise noted.

| Parameter |  | Typ | Units | Notes |
| :---: | :---: | :---: | :---: | :---: |
| A/D Channels |  |  |  |  |
| Bandwidth |  | 10, 1300 | MHz | $-3 \mathrm{~dB}, \mathrm{AC}$ coupled inputs |
|  |  | 500 | MHz | $-3 \mathrm{~dB}, \mathrm{DC}$ coupled inputs |
| Flatness |  | +/-0.4 | dB | 50 to 500 MHz , AC Coupled |
|  |  | +/-1.5 | dB | 0 to 500 MHz , DC Coupled |
| Range | AC Coupled | 2 | Vpp | Nominal |
|  |  | 10 | dBm | Nominal in a 50 Ohm system |
|  |  | 2.6 | Vpp | Absolute maximum (to avoid damage) |
|  |  | +/-10 | V | DC withstanding from 0 V |
|  | DC Coupled | +/-0.42 | V | Nominal from 0V |
|  |  | 1.5 | dBm | Nominal in a 50 Ohm system |
|  |  | +/-1 | V | Absolute maximum from 0 V (to avoid damage) |
| SNR |  | 65.4, 60.1 | dB(typ) | Fin $=70.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS ; AC,DC Coupled |
|  |  | 63.2, 59.5 | dB(typ) | Fin $=141.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS ; AC,DC Coupled |
|  |  | 61.5, 56.0 | dB(typ) | Fin $=252.85 \mathrm{MHz}, 95 \%$ FS, sine sampled at 1000 MSPS ; AC,DC Coupled |
| ENOB |  | 10.8, 9.9 | bits(typ) | Fin $=70.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS ; AC, DC Coupled |
|  |  | 10.7, 9.5 | bits(typ) | Fin $=141.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS ; AC,DC Coupled |
|  |  | 10.5, 8.8 | bits(typ) | Fin $=252.85 \mathrm{MHz}, 95 \%$ FS, sine sampled at 1000 MSPS ; AC,DC Coupled |
| SFDR |  | 84.1, 82.7 | dB(typ) | Fin $=70.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS ; AC,DC Coupled |
|  |  | 82.3, 65 | dB(typ) | Fin $=141.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS ; AC,DC Coupled |
|  |  | 78, 60 | dB(typ) | Fin $=252.85 \mathrm{MHz}, 95 \%$ FS, sine sampled at 1000 MSPS ; AC,DC Coupled |
| THD |  | - $75,-80$ | $\mathrm{dBc}(\mathrm{typ})$ | Fin $=70.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS ; AC,DC Coupled |
|  |  | -75, -75 | $\mathrm{dBc}(\mathrm{typ})$ | Fin $=141.1 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 1000 MSPS; AC,DC Coupled |
|  |  | -72, -58 | $\mathrm{dBc}(\mathrm{typ})$ | Fin $=252.85 \mathrm{MHz}, 95 \%$ FS, sine sampled at 1000 MSPS; AC,DC Coupled |
| NSD |  | -152.7, -147.6 | dBFS/Hz | $\mathrm{F}=70.1 \mathrm{MHz}$; AC,DC Coupled |
|  |  | -150.0, -145.5 | dBFS/Hz | $\mathrm{F}=141.1 \mathrm{MHz}$; AC, DC Coupled |
|  |  | -148.9, -142.0 | dBFS/Hz | $\mathrm{F}=252.85 \mathrm{MHz}$; AC,DC Coupled |
| Offset Error (absolute value maximum) |  | 1 | mV | Factory calibration, average of 64 K samples after warmup. |
| Gain Error (absolute value maximum) |  | 0.5 | \% | Factory calibration after warmup. |

## FMC-1000

## DIA ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range at $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}, \mathrm{fDAC}=2 \mathrm{Gsps}, 95 \% \mathrm{FS}, 2 \mathrm{X}$ interpolation, PLL enabled unless otherwise noted.

| Parameter | Typical | Units | Notes |
| :--- | :--- | :--- | :--- |
| DAC Channels |  |  |  |


| Bandwidth (Note 1) |  | 10, 1000 | MHz | Typical, AC Coupled |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 600 | MHz | Typical, DC Coupled |
| Output Amplitude Variation (Note 1) |  | +/-0.4 | dB | $10-500 \mathrm{MHz}$, AC Coupled |
|  |  | +/-0.5 | dB | $0-300 \mathrm{MHz}$, DC Coupled (from a best fit line with gain slope of approximately $0.4 \mathrm{~dB} / 100 \mathrm{MHz}$ ) |
| Range | AC Coupled | 0.9 | Vpp | Nominal |
|  |  | 2 | dBm | Nominal in a 50 Ohm system |
|  |  | +/-10 | V | DC withstanding from 0 V |
|  | DC Coupled | +/-0.5 | V | Nominal from 0V |
|  |  | 2.5 | dBm | Nominal in a 50 Ohm system |
| SNR (Note 2) |  | 72.5, 68 | dB | Fout $=70.1 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
|  |  | 70, TBD | dB | Fout $=141.1 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
|  |  | 64, TBD | dB | Fout $=252.85 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
| SFDR (Note 3) |  | 77, 55 | dB | Fout $=70.1 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
|  |  | 71, TBD | dB | Fout $=141.1 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
|  |  | 66, TBD | dB | Fout $=252.85 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
| THD (Note 3) |  | $-73,-46$ | dBc | Fout $=70.1 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
|  |  | $-70,-33$ | dBc | Fout $=141.1 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
|  |  | -62, -25 | dBc | Fout $=252.85 \mathrm{MHz}, 95 \%$ FS sine; AC,DC Coupled |
| NSD*** |  | -160.5, -155 | dBFS/Hz | $\mathrm{F}=70.1 \mathrm{MHz}$; AC, DC Coupled |
|  |  | -158.6, TBD | dBFS/Hz | $\mathrm{F}=141.1 \mathrm{MHz}$; AC, DC Coupled |
|  |  | -155.5, TBD | dBFS/Hz | $\mathrm{F}=252.85 \mathrm{MHz} ; \mathrm{AC}, \mathrm{DC}$ Coupled |
| Gain Error (absolute value maximum) |  | 0.5 | \% of FS | Calibrated |
| Offset Error (absolute value maximum) |  | 1 | mV | Calibrated |

## FMC-1000



Fig. 1 Representative performance plots for the ADC and DAC.

## FMC-1000

## Notes:

1. First, it is important to note that for the DAC, any attempt to convey an output signal in the $2^{\text {nd }}$ Nyquist zone $\left(0.5 f_{\text {clk }}<f_{\text {out }}<f_{\text {clk }}\right)$ will result in output an output signal indistinguishable from its $1^{\text {st }}$ Nyquist zone image. For example, a 750 MHz sine wave (absent any signal processing) clocked at 1000 MHz and a 250 MHz sine wave would be identical by any external measurement. Thus conveying a $2^{\text {nd }}$ Nyquist zone signal requires the use of a suitable highpass or bandpass filter. For the 750 MHz example just introduced, a filter that passes 750 MHz and strongly rejects the 250 MHz image (which would be stronger than the desired output) is required. That being said, the raw output of the DAC would be "colored" by the response of the circuitry between the DAC IC and the output connector. This lowpass response for the $-1(A C)$ version follows a $\operatorname{sinc}\left(\pi f_{\text {out }} / f_{\text {clk }}\right)+750 \mathrm{MHz}$ pole response. For the $-2(D C)$ version it follows a $\left[\operatorname{sinc}\left(\pi f_{\text {out }} / f_{\text {clk }}\right)\right]^{2}+$ 400 MHz pole response. These responses are plotted out in Fig. 1(e) and Fig. 1(g) on page 9 of this datasheet.
2. THD was measured directly using a spectrum analyzer. For practicality, only the second and third harmonics were used in the calculation (as the fourth and higher order harmonics were small enough not to affect the computed value for the frequencies at which these data were taken). See Fig. 1(f) and Fig. 1(h) for representative plots of THD.

FMC-1000 analog performance is specified like the D/A IC is specified, with a 20 mA full scale output. The FMC-1000 maximum output range is specified at (and the hardware is configured for) approximately 30 mA full scale, the maximum full scale amplitude of the D/A IC. The D/A full scale output current can be set in $1 / 16$ increments of the maximum using the D/A IC's 4 bit coarse gain control. This allows a setting of 20.625 mA which is less than $3.2 \%$ larger than 20 mA . This difference $(0.26 \mathrm{~dB})$ is not significant for analog specification purposes. However the output range will be scaled proportionally ( $11 / 16$ of specified ) when this is done.

## 500 MHz BW was used for DAC SNR.

The preliminary FMC-1000 analog performance is based on prototypes using the 1000 Msps A/D IC. At the time of writing the 1000 Msps part has better specified analog performance at 1000 Msps , but the 1250 Msps A/D IC is being revised by the vendor (final analog performance TBD at IC release). For preliminary FMC-1000 performance estimates at 1000 Msps the difference between 1000 and 1250 Msps ICs is TBD, and too small to be estimated accurately at the current time. So preliminary performance numbers apply to both versions, but are more preliminary for FMC-1000 models using the 1250 Msps capable A/D IC.

## Gain Definition

FMC-1000 is specified and tested with a 50 Ohm source impedance (unless otherwise noted). The FMC-1000 nominal gain is approximately 1 X or 0 dB when calibrated, the voltage at the FMC-1000 input equals the digital reading output. The internal hardware (raw) gain of the FMC-1000 may be different, for example when DC coupled the A/D IC sees about twice the voltage applied at the FMC1000 input.

Variations in source impedance change the system gain. The 50 Ohm terminations in a RF system are rarely physical resistors (they are the Thévenin equivalent of the circuit). At lower input frequencies 50 Ohm source terminations are not common but are needed for continuity with higher frequency 50 Ohm measurements. This source 50 Ohm series termination forms a voltage divider with the FMC-1000 input impedance reducing the source voltage by approximately $1 / 2$ at the FMC-1000 input. Replacing it with a series 0 Ohm source resistance will change the system gain about 2 X in Voltage or 6 dB .

## Digital Calibration Note

The FMC-1000 can be digitally calibrated for offset and gain. However if the signal is clipped (outside the A/D range) the information is lost, so the raw gain is typically designed for a signal level at the A/D that is slightly less than A/D Full Scale in the bandwidth of interest to allow the nominal input range to be measured accurately without clipping when digitally calibrated.

## FMC-1000

## Front Panel (Bezel) Detail



Note: 2.5 V logic inputs absolute maximum 2.8 V , absolute minimum -0.3 V

## FMC-1000

## FMC Interface Detail

| IO | LA[33:0] pairs, HA[23:0] pairs \& HB[21:0] pairs (un-driven pins grounded for improved signal integrity) DP[0..7]_C2M_N,P (JESD 204B subclass 1 DAC data lanes up to 12.5 Gbps each*) DP[0..3]_M2C_N,P (JESD 204B subclass 1 ADC data lanes up to 12.5 Gbps each*) |
| :---: | :---: |
| IO Standards | FMC DP: JESD204B (subclass 1) <br> FMC LA, HA and HB: <br> Differential: LVDS <br> Single Ended: 2.5 V LVCMOS <br> FMC Control Signals: 3.3V LVTTL <br> FMC Clocks (bidirectional clocks driven by carrier): LVDS |
| Required voltages | FMC 3P3V and $3 \mathrm{P} 3 \mathrm{VAUX}=3.3 \mathrm{~V}+/-4 \%$ <br> FMC VADJ $=2.5 \mathrm{~V}+/-4 \%$ <br> To reduce FMC-1000 power consumption, FMC Voltages are used without re-regulation and are specified at $+/-$ $4 \%$ (this is not usually a issue as FMC-1000 maximum supply currents are smaller than the FMC maximums), the FMC-1000 can function with wider Voltage tolerance but is specified with $+/-4 \%$ Voltage supplies. <br> FMC $12 \mathrm{P} 0 \mathrm{~V}(12 \mathrm{~V})$ is not used in standard FMC-1000 hardware configurations, it is routed to a wire terminal / test point on the FMC-1000 for optional system / customer use. |

## FMC Connector Grid (Component side)

## 40




## FMC-1000

FMC Connector Pins from VITA 57.1

|  | K | J | H | G | F | E | D | C | B | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | VREF_B_M2C | GND | VREF_A_M2C | GND | PG_M2C | GND | PG_C2M | GND | CLK_DIR | GND |
| 2 | GND | CLK3_BIDIR_P | PRSNT_M2C_L | CLK1_M2C_P | GND | HA01_P_CC | GND | DP0_C2M_P | GND | DP1_M2C_P |
| 3 | GND | CLK3 BIDIR N | GND | CLK1 M2C N | GND | HA01 N CC | GND | DP0 C2M N | GND | DP1 M2C N |
| 4 | CLK2 BIDIR P | GND | CLKO M2C P | GND | HA00 P CC | GND | GBTCLKO_MRC_P | GND | DP9 M2C P | GND |
| 5 | CLK2_BIDIR_N | GND | CLKO_M2C_N | GND | HA00_N_CC | GND | GBTC_KO_MRC_N | GND | DP9_M2C_N | GND |
| 6 | GND | HA03 P | GND | LA00 P CC | GND | HA05 P | GND | DP0 M2C P | GND | DP2 M2C P |
| 7 | HA02_P | HA03_N | LA02_P | LA00_N_CC | HA04_P | HA05_N | GND | DP0_M2C_N | GND | DP2_M2C_N |
| 8 | HA02_N | GND | LA02_N | GND | HA04_N | GND | LA01_P_CC | GND | DP8_M2C_P | GND |
| 9 | GND | HA07_P | GND | LA03_P | GND | HA09_P | LA01_N_CC | GND | DP8_M2C_N | GND |
| 10 | HA06 P P | HA07 N | LA04 P | LA03 N | HA08 P | HA09 N | GND | LA06 P | GND | DP3 M2C P |
| 11 | HA06 N | GND | LA04 N | GND | HA08 N | GND | LA05 P | LA06 N | GND | DP3 M2C N |
| 12 | GND | HA11-P | GND | LA08 P | GND | HA13 P | LA05 N | GND | DP7 M2C P | GND |
| 13 | HA10 P | HA11 N | LA07 P | LA08 N | HA12 P | HA13 N | GND | GND | DP7 M2C N | GND |
| 14 | HA10_N | GND | LA07 N | GND | HA12_N | GND | LA09_P | LA10_P | GND | DP4_M2C_P |
| 15 | GND | HA14_P | GND | LA12_P | GND | HA16_P | LA09_N | LA10_N | GND | DP4_M2C_N |
| 16 | HA17_P_CC | HA14_N | LA11_P | LA12_N | HA15-P | HA16_N | GND | GND | DP6_M2C_P | GND |
| 17 | HA17_N_CC | GND | LA11_N | GND | HA15_N | GND | LA13_P | GND | DP6_M2C_N | GND |
| 18 | GND | HA18_P | GND | LA16_P | GND | HA20_P | LA13_N | LA14_P | GND | DP5_M2C_P |
| 19 | HA21_P | HA18_N | LA15_P | LA16_N | HA19_P | HA20_N | GND | LA14_N | GND | DP5_M2C_N |
| 20 | HA21 N | GND | LA15 N | GND | HA19 N | GND | LA17 P CC | GND | GBTCLK1_MRC_P | GND |
| 21 | GND | HA22 P | GND | LA20 P | GND | HB03 P | LA17 N_CC | GND | GBTCLK1_MRC_N | GND |
| 22 | HA23 P | HA22 N | LA19 P | LA20 N | HB02 P | HB03 N | GND | LA18 P CC | GND | DP1 C2M P |
| 23 | HA23_N | GND | LA19_N | GND | HB02_N | GND | LA23_P | LA18_N_CC | GND | DP1_C2M_N |
| 24 | GND | HB01_P | GND | LA22_P | GND | HB05_P | LA23_N | GND | DP9_C2M_P | GND |
| 25 | HB00_P_CC | HB01_N | LA21_P | LA22_N | HB04_P | HB05_N | GND | GND | DP9_C2M_N | GND |
| 26 | HB00 N CC | GND | LA21 N | GND | HB04 N | GND | LA26 P | LA27 P | GND | DP2 C2M P |
| 27 | GND | HB07 P | GND | LA25 P | GND | HB09 P | LA26 N | LA27 N | GND | DP2 C2M N |
| 28 | HB06 P CC | HB07 N | LA24 P | LA25 N | HB08 P | HB09 N | GND | GND | DP8 C2M P | GND |
| 29 | HB06 N CC | GND | LA24 N | GND | HB08 N | GND | TCK | GND | DP8 C2M N | GND |
| 30 | GND | HB11_P | GND | LA29_P | GND | HB13_P | TDI | SCL | GND | DP3_C2M_P |
| 31 | HB10_P | HB11_N | LA28_P | LA29_N | HB12_P | HB13_N | TDO | SDA | GND | DP3_C2M_N |
| 32 | HB10_N | GND | LA28_N | GND | HB12_N | GND | 3P3VAUX | GND | DP7_C2M_P | GND |
| 33 | GND | HB15_P | GND | LA31_P | GND | HB19_P | TMS | GND | DP7_C2M_N | GND |
| 34 | HB14 P | HB15 N | LA30 P | LA31 N | HB16 P | HB19 N | TRST L | GA0 | GND | DP4_C2M P |
| 35 | HB14 N | GND | LA30 N | GND | HB16 N | GND | GA1 | 12POV | GND | DP4 C2M N |
| 36 | GND | HB18 P | GND | LA33 P | GND | HB21 P | 3P3V | GND | DP6 C2M P | GND |
| 37 | HB17 P CC | HB18 N | LA32 P | LA33 N | HB20 P | HB21 N | GND | 12POV | DP6 C2M N | GND |
| 38 | HB17_N_CC | GND | LA32_N | GND | HB20_N | GND | 3P3V | GND | GND | DP5_C2M_P |
| 39 | GND | VIO_B_M2C | GND | VADJ | GND | VADJ | GND | 3P3V | GND | DP5_C2M_N |
| 40 | VIO_B_M2C | GND | VADJ | GND | VADJ | GND | 3P3V | GND | RES0 | GND |
|  |  |  | LPC Connector | LPC Connector |  |  | LPC Connector | LPC Connector |  |  |

## FMC-1000

FMC-1000 FMC Connector Signals Detail.... Bank A

| P1 | P1 Pin | FMC-1000 |  |
| :---: | :---: | :---: | :---: |
| Pin | Name | Net | NOTE: |
| A1 | GND | GND | ADC JESD 204B DATA |
| A2 | DP1_M2C_P | ADC_TX1_TO_FMC_DP1_M2C_P | AC Coupled, set A/D IC output to swap P/N |
| A3 | DP1_M2C_N | ADC_TX1_TO_FMC_DP1_M2C_N | AC Coupled, set A/D IC output to swap P/N |
| A. 4 | GND | GND |  |
| A5 | GND | GND |  |
| A6 | DP2_M2C_P | ADC_TX2_TO_FMC_DP2_M2C_P | AC Coupled, set A/D IC output to swap P/N |
| A7 | DP2_M2C_N | ADC_TX2_TO_FMC_DP2_M2C_N | AC Coupled, set A/D IC output to swap P/N |
| A8 | GND | GND |  |
| A9 | GND | GND |  |
| A10 | DP3_M2C_P | ADC_TX3_TO_FMC_DP3_M2C_P | AC Coupled, set A/DIC output to swap P/N |
| A11 | DP3_M2C_N | ADC_TX3_TO_FMC_DP3_M2C_N | AC Coupled, set A/D IC output to swap P/N |
| A12 | GND | GND |  |
| A13 | GND | GND |  |
| A14 | DP4_M2C_P | no connection |  |
| A15 | DP4_M2C_N | no connection |  |
| A16 | GND | GND |  |
| A17 | GND | GND |  |
| A18 | DP5_M2C_P | no connection |  |
| A19 | DP5_M2C_N | no connection |  |
| A. 20 | GND | GND |  |
| A21 | GND | GND | DAC JESD 204B DATA |
| A.22 | DP1_C2M_P | DAC_RX6_TO_FMC_DP1_C2M_P | AC Coupled, set D/A IC output to swap P/N |
| A 23 | DP1_C2M_N | DAC_RX6_TO_FMC_DP1_C2M_N | AC Coupled, set D/AIC output to swap P/N |
| A.24 | GND | GND |  |
| A 25 | GND | GND |  |
| A26 | DP2_C2M_P | DAC_RX5_TO_FMC_DP2_C2M_P | AC Coupled |
| A27 | DP2_C2M_N | DAC_RX5_TO_FMC_DP2_C2M_N | AC Coupled |
| A28 | GND | GND |  |
| A. 29 | GND | GND |  |
| A30 | DP3_C2M_P | DAC_RX4_TO_FMC_DP3_C2M_P | AC Coupled, set D/A IC output to swap P/N |
| A31 | DP3_C2M_N | DAC_RX4_TO_FMC_DP3_C2M_N | AC Coupled, set D/A IC output to swap P/N |
| A32 | GND | GND |  |
| A33 | GND | GND |  |
| A34 | DP4_C2M_P | DAC_RX3_TO_FMC_DP4_C2M_P | AC Coupled, set D/AIC output to swap P/N |
| A35 | DP4_C2M_N | DAC_RX3_TO_FMC_DP4_C2M_N | AC Coupled, set D/AIC output to swap P/N |
| A36 | GND | GND |  |
| A37 | GND | GND |  |
| A38 | DP5_C2M_P | DAC_RX2_TO_FMC_DP5_C2M_P | AC Coupled |
| A39 | DP5_C2M_N | DAC_RX2_TO_FMC_DP5_C2M_N | AC Coupled |
| A.40 | GND | GND |  |

## FMC-1000

## Bank B

| P1 | P1 Pin | FMC-1000 |  |
| :---: | :---: | :---: | :---: |
| Pin | Name | Net | NOTE: |
| B1 | CLK_DIR | P_3V3_AUX | $3.3 \mathrm{~V}, 10 \mathrm{~K}$ Ohm pull up to P_3V3_AUX, bidirectional clocks are C2M |
| B2 | GND | GND |  |
| B3 | GND | GND |  |
| B4 | DP9_M2C_P | no connection |  |
| B5 | DP9_M2C_N | no connection | - |
| B6 | GND | GND |  |
| B7 | GND | GND | , |
| B8 | DP8_M2C_P | no connection |  |
| B9 | DP8_M2C_N | no connection |  |
| B10 | GND | GND |  |
| B11 | GND | GND |  |
| B12 | DP7_M2C_P | no connection |  |
| B13 | DP7_M2C_N | no connection |  |
| B14 | GND | GND |  |
| B15 | GND | GND |  |
| B16 | DP6_M2C_P | no connection |  |
| B17 | DP6_M2C_N | no connection |  |
| B18 | GND | GND |  |
| B19 | GND | GND |  |
| B20 | GBTCLK1_M2C_P | GBTCLK1_P | LVDS |
| B21 | GBTCLK1_M2C_N | GBTCLK1_N | LVDS |
| B22 | GND | GND |  |
| B23 | GND | GND |  |
| B24 | DP9_C2M_P | no connection |  |
| B25 | DP9_C2M_N | no connection |  |
| B26 | GND | GND |  |
| B27 | GND | GND |  |
| B28 | DP8_C2M_P | no connection |  |
| B29 | DP8_C2M_N | no connection |  |
| B30 | GND | GND |  |
| B31 | GND | GND | DAC JESD 204B DATA |
| B32 | DP7_C2M_P | DAC_RXO_TO_FMC_DP7_C2M_P | AC Coupled |
| B33 | DP7_C2M_N | DAC_RXO_TO_FMC_DP6_C2M_N | AC Coupled |
| B34 | GND | GND |  |
| B35 | GND | GND |  |
| B36 | DP6_C2M_P | DAC_RX1_TO_FMC_DP6_C2M_P | AC Coupled, set D/AIC output to swap P/N |
| B37 | DP6_C2M_N | DAC_RX1_TO_FMC_DP6_C2M_N | AC Coupled, set D/AIC output to swap P/N |
| B38 | GND | GND |  |
| B39 | GND | GND |  |
| B40 | RESO | no connection |  |

## FMC-1000

| Bank C | P1 | P1 Pin | FMC-1000 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Pin | Name | Net | NOTE: |
|  | C1 | GND | GND | DAC JESD 204B DATA |
|  | C2 | DPO_C2M_P | DPO_C2M_P | AC Coupled: DAC_RX6_TO_FMC_DPO_C2M_P |
|  | C3 | DPO_C2M_N | DPO_C2M_N | AC Coupled: DAC_RX6_TO_FMC_DPO_C2M_N |
|  | C4 | GND | GND |  |
|  | C5 | GND | GND | ADC JESD 204B DATA |
|  | C6 | DPO_M2C_P | DPO_M2C_P | AC Coupled, set A/D IC output to swap P/N: ADC_TXO_TO_FMC_DPO_M2C |
|  | C7 | DPO_M2C_N | DPO_M2C_N | AC Coupled, set A/D IC output to swap P/N: ADC_TXO_TO_FMC_DPO_M2C |
|  | C8 | GND | GND |  |
|  | C9 | GND | GND |  |
|  | C10 | LA06_P | FMC_LA6_TP | TP33 with 10K pull down to ground |
|  | C11 | LA06_N | ADC_PDWN/STBY | No Connection in standard product |
|  | C12 | GND | GND |  |
|  | C13 | GND | GND |  |
|  | C14 | LA10_P | ADC_SCLK | Due to capacitive loading and unknown driver (carrier) strength, interface clocks >2 MHz should be tested |
|  | C15 | LA10_N | ADC_CSB |  |
|  | C16 | GND | GND |  |
|  | C17 | GND | GND |  |
|  | C18 | LA14_P | CLK_MUX_SI/SEL1 |  |
|  | C19 | LA14_N | SY_MUX_SELO |  |
|  | C20 | GND | GND |  |
|  | C21 | GND | GND |  |
|  | C22 | LA18_P_CC | FMC_CLK_4X4_OUT1_P | LVDS |
|  | C23 | LA18_N_CC | FMC_CLK_4X4_OUT1_N | LVDS |
|  | C24 | GND | GND |  |
|  | C25 | GND | GND |  |
|  | C26 | LA27_P | DAC_SDO |  |
|  | C27 | LA27_N | DAC_SDIO_DIR |  |
|  | C28 | GND | GND |  |
|  | C29 | GND | GND |  |
|  | C30 | SCL | FMC_SCL | 3.3V, 10 K Ohm PU, Due to capacitive loading and unknown driver (carrier) strength, interface clocks $>2 \mathrm{MHz}$ should be tested |
|  | C31 | SDA | FMC_SDA | $3.3 \mathrm{~V}, 10 \mathrm{~K}$ Ohm PU (pull up) |
|  | C32 | GND | GND |  |
|  | C33 | GND | GND |  |
|  | C34 | GAO | FMC_GAO | 3.3 V |
|  | C35 | 12 POV | P_12V0 | Not used on standard model, connected to through hole test point (TP36) for potential external use |
|  | C36 | GND | GND |  |
|  | C37 | 12 POV | P_12V0 | Not used on standard model, connected to through hole test point (TP36) for potential external use |
|  | C38 | GND | GND |  |
|  | C39 | 3 P 3 V | P_3V3_FMC |  |
|  | C40 | GND | GND |  |

## FMC-1000

## Bank D



## FMC-1000

## Bank E



## FMC-1000

## Bank F

| P1 | P1 Pin | FMC-1000 |  |
| :---: | :---: | :---: | :---: |
| Pin | Name | Net | NOTE: |
| F1 | PG_M2C | FMC_PG_M2C | 3.3 V , open drain output with 577 Ohm pull up to P_3V3_AUX |
| F2 | GND | GND |  |
| F3 | GND | GND | $\rightarrow$ |
| F4 | HAOO_P_CC | GND | - |
| F5 | HAOO_N_CC | GND | $\square$ |
| F6 | GND | GND | - |
| F7 | HA04_P | GND | , |
| F8 | HAO4_N | GND |  |
| F9 | GND | GND | $\square$ |
| F10 | HAO8_P | GND | $\bigcirc$ |
| F11 | HA08_N | GND | , |
| F12 | GND | GND |  |
| F13 | HA12_P | GND |  |
| F14 | HA12_N | GND |  |
| F15 | GND | GND |  |
| F16 | HA15_P | GND |  |
| F17 | HA15_N | GND |  |
| F18 | GND | GND |  |
| F19 | HA19_P | GND |  |
| F20 | HA19_N | GND |  |
| F21 | GND | GND |  |
| F22 | HBO2_P | GND |  |
| F23 | HBO2_N | GND |  |
| F24 | GND | GND |  |
| F25 | HB04_P | GND |  |
| F26 | HB04_N | GND |  |
| F27 | GND | GND |  |
| F28 | HB08_P | GND |  |
| F29 | HB08_N | GND |  |
| F30 | GND | GND |  |
| F31 | HB12_P | GND |  |
| F32 | HB12_N | GND |  |
| F33 | GND | GND |  |
| F34 | HB16_P | GND |  |
| F35 | HB16_N | GND |  |
| F36 | GND | GND |  |
| F37 | HB20_P | GND |  |
| F38 | HB2O_N | GND |  |
| F39 | GND | GND |  |
| F40 | VADJ | P_2V5_FMC |  |

## FMC-1000

## Bank G

| P1 | P1 Pin | FMC-1000 |  |
| :---: | :---: | :---: | :---: |
| Pin | Name | Net | NOTE: |
| G1 | GND | GND |  |
| G2 | CLK1_M2C_P | Rev B and above: DAC_CLK_P | RevA: ADC_SYS_P, All revs LVDS |
| G3 | CLK1_M2C_N | Rev B and above: DAC_CLK_N | Rev A: ADC_SYS_N, All revs LVDS |
| G4 | GND | GND |  |
| G5 | GND | GND |  |
| G6 | LAOO_P_CC | FMC_SYS_4X4_OUTO_P | LVDS |
| G7 | LAOO_N_CC | FMC_SYS_4X4_OUTO_N | LVDS |
| G8 | GND | GND | - |
| G9 | LA03_P | DAC_SYN_P | LVDS |
| G10 | LA03_N | DAC_SYN_N | LVDS |
| G11 | GND | GND | - |
| G12 | LA08_P | ADC_FD_0 |  |
| G13 | LAO8_N | ADC_FD_1 |  |
| G14 | GND | GND |  |
| G15 | LA12_P | CLK_MUX_MODE |  |
| G16 | LA12_N | CLK_MUX_LOAD |  |
| G17 | GND | GND |  |
| G18 | LA16_P | PLL_RESET |  |
| G19 | LA16_N | PLL_GPO |  |
| G20 | GND | GND |  |
| G21 | LA20_P | PLL_UTIL_3 |  |
| G22 | LA20_N | PLL_UTIL_4 |  |
| G23 | GND | GND |  |
| G24 | LA22_P | PLL_CS_N |  |
| G25 | LA22_N | PLL_SCK | Due to capacitive loading and unknown driver (carrier) strength, interface clocks >2 MHz should be tested |
| G2E | GND | GND |  |
| G27 | LA25_P | DAC_SLEEP |  |
| G28 | LA25_N | DAC_SCLK |  |
| G29 | GND | GND |  |
| G30 | LA29_P | DAC_ALARM |  |
| G31 | LA29_N | FMC_SYSTEM_LED | Not connected in standard model |
| G32 | GND | GND |  |
| G33 | LA31_P | FMC_ADC_READY_N | Not connected in standard model |
| G34 | LA31_N | FMC_DAC_READY_N | Not connected in standard model |
| G35 | GND | GND |  |
| G36 | LA33_P | UTILITY_JP2_2 | connected to JP2 utility connector pin 2 (JP2 not populated in standard product) |
| G37 | LA33_N | UTILITY_JP2_4 | connected to JP2 utility connector pin 4 (JP2 not populated in standard product) |
| G38 | GND | GND |  |
| G39 | VADJ | P_2V5_FMC |  |
| G40 | GND | GND |  |

## FMC-1000

## Bank H

| P1 | P1 Pin | FMC-1000 |  |
| :---: | :---: | :---: | :---: |
| Pin | Name | Net | NOTE: |
| H1 | VREF_A_M2C | no connection |  |
| H2 | PRSNT_M2C_L | GND |  |
| H3 | GND | GND |  |
| H4 | CLKO_M2C_P | ADC_CLK_P | LVDS |
| H5 | CLKO_M2C_N | ADC_CLK_N | LVDS |
| H6 | GND | GND |  |
| H7 | LAO2_P | DAC_SYS_P | LVDS |
| H8 | LAO2_N | DAC_SYS_N | LVDS |
| H9 | GND | GND | $\sim$ |
| H10 | LAO4_P | ADC_SYN_P | LVDS |
| H11 | LAO4_N | ADC_SYN_N | LVDS |
| H12 | GND | GND |  |
| H13 | LA07_P | Rev $B$ and above: $A D C$ _SYS_P | Rev A: DAC_CLK_P, All revs LVDS |
| H14 | LA07_N | Rev B and above: ADC_SYS_N | Rev A: DAC_CLK_N, All revs LVDS |
| H15 | GND | GND |  |
| H16 | LA11_P | SY_MUX_MODE |  |
| H17 | LA11_N | SY_MUX_LOAD |  |
| H18 | GND | GND |  |
|  | LA15_P | SY_MUX_SCLK |  |
| H20 | LA15_N | SY_MUX_SI/SEL1 |  |
| H21 | GND | GND |  |
| H22 | LA19_P | PLL_UTIL_1 |  |
|  | LA19_N | PLL_UTIL_2 |  |
| H24 | GND | GND |  |
|  | LA21_P | PLL_UTIL_3_DIR |  |
|  | LA21_N | PLL_UTIL_4_DIR |  |
| H27 | GND | GND |  |
|  | LA24_P | DAC_RESET_N |  |
| H29 | LA24_N | DAC_TX_EN |  |
| H3C | GND | GND |  |
|  | LA28_P | DAC_SYNC_AB_N |  |
|  | LA28_N | DAC_SYNC_CD_N |  |
| H33 | GND | GND |  |
| H34 | LABO_P | FMC_USER_DEF_POW_EN | Not connected in standard model |
| H35 | LA30_N | FMC_USER_DEF_POW_PG | Not connected in standard model |
| H36 | GND | GND |  |
| H37 | LA32_P | FMC_PG_M2C_ALT | Not connected in standard model |
| H38 | LA32_N | FMC_TEMP_ALRT | Also connected to JP2 utility connector pin 6 (JP2 not populated in standard product) |
| H39 | GND | GND |  |
| H4O | VADJ | P_2V5_FMC |  |

## FMC-1000

## Bank J

| P1 | P1 Pin | FMC-1000 |  |
| :---: | :---: | :---: | :---: |
| Pin | Name | Net | NOTE: |
| J1 | GND | GND |  |
| J2 | CLK3_BIDIR_P | FMC_CLK3_P | LVDS |
| 13 | CLK3_BIDIR_N | FMC_CLK3_N | LVDS |
| 14 | GND | GND | $\square$ |
| J5 | GND | GND | - |
| 16 | HAO3_P | GND | - |
| 17 | HA03_N | GND | - |
| 18 | GND | GND | - - |
| 19 | HA07_P | GND |  |
| J10 | HA07_N | GND |  |
| J11 | GND | GND | $\rightarrow-1$ |
| J12 | HA11_P | GND | - |
| J13 | HA11_N | GND |  |
| J14 | GND | GND |  |
| J15 | HA14_P | GND |  |
| J16 | HA14_N | GND |  |
| $J 17$ | GND | GND |  |
| J18 | HA18_P | GND |  |
| J19 | HA18_N | GND |  |
| J20 | GND | GND |  |
| J21 | HA22_P | GND |  |
| J22 | HA22_N | GND |  |
| J23 | GND | GND |  |
| J24 | HB01_P | GND |  |
| J25 | HB01_N | GND |  |
| J26 | GND | GND |  |
| J27 | HB07_P | GND |  |
| J28 | HB07_N | GND |  |
| J29 | GND | GND |  |
| J30 | HB11_P | GND |  |
| J31 | HB11_N | GND |  |
| J32 | GND | GND |  |
| J33 | HB15_P | GND |  |
| J34 | HB15_N | GND |  |
| J35 | GND | GND |  |
| J36 | HB18_P | GND |  |
| 137 | HB18_N | GND |  |
| J38 | GND | GND |  |
| $J 39$ | VIO_B_M2C | P_VIO_B | 2.5 V (filtered VADJ) |
| 140 | GND | GND |  |

## FMC-1000

## Bank K

| P1 | P1 Pin | FMC-1000 |  |
| :--- | :--- | :--- | :--- |
| Pin | Name | Net | NOTE: |
| K1 | VREF_B_M2C | no connection |  |
| K2 | GND | GND |  |
| K3 | GND | GND |  |
| K4 | CLK2_BIDIR_P | FMC_CLK2_P | LVDS |
| K5 | CLK2_BIDIR_N | FMC_CLK2_N | LVDS |
| K6 | GND | GND |  |
| K7 | HA02_P | GND |  |
| K8 | HA02_N | GND |  |
| K9 | GND | GND |  |
| K10 | HA06_P | GND |  |
| K11 | HAO6_N | GND |  |
| K12 | GND | GND |  |
| K13 | HA10_P | GND |  |
| K14 | HA10_N | GND |  |
| K15 | GND | GND |  |
| K16 | HA17_P_CC | GND |  |
| K17 | HA17_N_CC | GND |  |
| K18 | GND | Giltered VADJ) |  |
| K19 | HA21_P | GND |  |
| K20 | HA21_N | GND |  |
| K21 | GND | GND |  |
| K22 | HA23_P | GND |  |
| K23 | HA23_N | GND |  |
| K24 | GND | GND |  |
| K25 | HB00_P_CC | GND |  |
| K26 | HB00_N_CC | GND |  |
| K27 | GND |  |  |
| K28 | HBO6_P_CC | GND |  |
| K29 HB06_N_CC | GND |  |  |
| K30 | GND |  |  |
| K31 | HB10_P |  |  |
| K32 | HB10_N |  |  |
| K33 | GND |  |  |
| K34 | HB14_P | GND |  |
| K35 | HB14_N |  |  |
| K36 | GND |  |  |
| K37 | HB17_P_CC | GND |  |
| K39 | GN17_N_CC | GND |  |

## FMC-1000

## IMPORTANT NOTICES

Innovative Integration Incorporated reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Innovative Integration's terms and conditions of sale supplied at the time of order acknowledgment.

Innovative Integration warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Innovative Integration's standard warranty. Testing and other quality control techniques are used to the extent Innovative Integration deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Innovative Integration assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Innovative Integration products. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Innovative Integration does not warrant or represent that any license, either express or implied, is granted under any Innovative Integration patent right, copyright, mask work right, or other Innovative Integration intellectual property right relating to any combination, machine, or process in which Innovative Integration products or services are used. Information published by Innovative Integration regarding third-party products or services does not constitute a license from Innovative Integration to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Innovative Integration under the patents or other intellectual property of Innovative Integration.

Reproduction of information in Innovative Integration data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice.

Innovative Integration is not responsible or liable for such altered documentation. Resale of Innovative Integration products or services with statements different from or beyond the parameters stated by Innovative Integration for that product or service voids all express and any implied warranties for the associated Innovative Integration product or service and is an unfair and deceptive business practice. Innovative Integration is not responsible or liable for any such statements.

For further information on Innovative Integration products and support see our web site:
www.innovative-dsp.com
Mailing Address: Innovative Integration, Inc.
741 Flynn Road, Camarillo, California 93012
Copyright ©2007, 2014, 2015, 2016, Innovative Integration, Incorporated

