FMC Module with Dual 500 MSPS 14-bit A/D, Dual 1200 MSPS 16-bit DAC with PLL and Timing Controls (Preliminary)

FEATURES

- Two A/D Inputs
- 500 MSPS, 14-bit
- AC or DC coupled
- Two D/A Outputs
- 1200 MSPS, 16-bit D/A
- AC or DC coupled
- Sample clocks and timing and controls
- External clock/reference input
- Programmable PLL
- $100 \mathrm{MHz}, 0.5 \mathrm{ppm}$ reference
- Integrated with FMC triggers
- FMC module, VITA 57.1
- High Pin Count no SERDES required
- Compatible with 2.5V VADJ
- Power monitor and controls
- 12 W typical
- Conduction Cooling per VITA 20 subset
- Environmental ratings for -40 to 85C

9 g RMS sine, $0.1 \mathrm{~g} 2 / \mathrm{Hz}$ random vibration

APPLICATIONS

- Wireless Receiver and Transmitter
- LTE, WiMAX Physical Layer
- RADAR
- Medical Imaging
- High Speed Data Recording and Playback

SOFTWARE

- MATLAB/VHDL FrameWork Logic

DESCRIPTION

The FMC-500M is a high speed digitizing and signal generation FMC IO module featuring two 500MSPS A/D channels and two 1200 MSPS D/A channels supported by sample clock and triggering features.

The FMC-500M features a dual channel, 14-bit 500MSPS A/D device plus a dual 1200 MSPS update rate DAC device. Analog IO may be either AC or DC coupled. Receiver IF frequencies of up to 500 MHz are supported due to the wide bandwidth analog front-end. The sample clock may be sourced from either a low-jitter PLL or external input. Multiple cards can be synchronized for sampling to address MIMO applications.

The FMC-500M power consumption is 12 W for typical operation. The module may be conduction cooled using VITA20 standard and a heat spreading plate. Ruggedization levels for wide-temperature operation from -40 to +85 C operation and $0.1 \mathrm{~g}^{2} / \mathrm{Hz}$ vibration. Conformal coating is available.

Support logic in VHDL is provided for integration with FPGA carrier cards. Specific support for Innovative carrier cards includes integration with Framework Logic tools that support VHDL and Matlab developers. The Matlab BSP supports real-time hardware-in-the-loop development using the graphical block diagram Simulink environment with Xilinx System Generator for the FMC integrated with the FPGA carrier card.

Software tools for Innovative carrier cards include host development C++ libraries and drivers for Windows and Linux, 32/64-bit including RTOS variants. Application examples demonstrating the module features are provided.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Innovative Integration products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Innovative Integration standard warranty. Production processing does not necessarily include testing of all parameters.

FMC-500M

* Sampling rates in an application depend on carrier and system design

This electronics assembly can be damaged by ESD. Innovative Integration recommends that all electronic assemblies and components circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

Product	Part No.	Description				
FMC-500M	$80281-<\mathrm{CFG}>-$ $<\mathrm{ER}>$	FMC module with dual 14-bit A/Ds (500 MSPS per channel), dual 16-bit DACs (1200 MSPS total update rate / 615 MSPS per channel), PLL and timing controls <CFG> is configuration. $0:$ AC-coupled analog ADC inputs and DAC outputs $2:$ DC-coupled analog ADC inputs and DAC outputs $<$ ER> is environmental rating L0...L4.				
Cables						
SSMC to BNC cable	67156	IO cable with SSMC (male) to BNC (male), 1 meter	$	$	Carrier Cards	80262
:---	:---					

$<\mathrm{ER}>$ corresponds to the Environmental Rating, L0...L4.

Physicals	
Form Factor	FMC VITA 57.1 single-width
Size	$76.5 \times 69 \mathrm{~mm}$ 10 mm mounting height
Weight	180 g (approximate, contact factory if critical to application)
Hazardous Materials	Lead-free and RoHS compliant

FMC-500M

FMC-500M

Front Panel (Bezel) Detail

Front Panel Label	Schematic reference	Description
ADC 0	J1	ADC 0 Input. DC-coupled versions (-2-Lx) Load Impedance: 50 ohm termination to ground. Expected signal: $0 \pm 1 \mathrm{~V}$ (nominal) AC-coupled versions (-0-Lx) Load Impedance: 50 ohm AC termination to ground (DC open) Expected signal: Vdc $\pm 1 \mathrm{~V}$ (nominal) (10 dBm), $\|\mathrm{Vdc}\| \leq 5 \mathrm{~V}$
ADC 1	J2	ADC 1 Input. (same terminations and input requirements as ADC 0)
EXT TRIG	J11	External Trigger Input. 50 DC termination to ground. Expected signal: 1.2 V nominal threshold, $0-3.3 \mathrm{~V}$ nominal limits.
CLK OUT	J12	Clock Output. AC-coupled, compatible with 50 ohm terminated load. Nominal signal output: $0.4-1.65 \mathrm{Vpp}$ (hardware reconfigurable)
CLK IN	J13	External Clock Input. (When selected, used in place of internal 100 MHz reference clock.) Load Impedance: 50 ohms AC termination to ground (DC open). Expected signal: $0.3-3.3 \mathrm{Vpp}, \mathrm{AC}$ coupled
DAC 0 Out +	J6	DAC 0 Output (positive sense) DC-coupled versions (-2-Lx) Source Impedance: 50 ohms Nominal signal output: $0 \pm 0.5 \mathrm{~V}$ (into a 50 termination to ground.) AC-coupled versions (-0-Lx) Source Impedance: Approximately 150 ohms AC (DC short) Nominal signal output: $0 \pm 0.5 \mathrm{~V}$ (into a 50 ohm AC termination.)
DAC 0 Out -	J7	DAC 0 Output (negative sense) DC-coupled versions (-2-Lx) (same characteristics as DAC 0 Out + , except for polarity inversion) AC-coupled versions (-0-Lx) (In the AC coupled versions this output is grounded).
DAC 1 Out +	J8	DAC 1 Output (positive sense) (same characteristics as DAC 0 Out +)
DAC 1 Out -	J9	DAC 1 Output (negative sense) DC-coupled versions (-2-Lx) (same characteristics as DAC 1 Out +, except for polarity inversion) AC-coupled versions (-0-Lx) (In the AC coupled versions this output is grounded).

Note: 2.5 V logic inputs absolute maximum 2.8 V , absolute minimum -0.3 V

FMC-500M

Operating Environment Ratings

Modules rated for operating environment temperature, shock and vibration are offered. The modules are qualified for wide temperature, vibration and shock to suit a variety of applications in each of the environmental ratings L0 through L4 and 100% tested for compliance.

Environment Rating <ER>		L0	L1	L2	L3	L4
Environment		Office, controlled lab	Outdoor, stationary	Industrial	Vehicles	Military and heavy industry
Applications		Lab instruments, research	Outdoor monitoring and controls	Industrial applications with moderate vibration	Manned vehicles	Unmanned vehicles, missiles, oil and gas exploration
Cooling		Forced Air 2 CFM	Forced Air 2 CFM	Conduction	Conduction	Conduction
Operating Temperature		0 to +50 C	-40 to +85 C	-20 to +65 C	-40 to +70 C	-40 to +85 C
Storage Temperature		-20 to +90 C	-40 to +100 C	-40 to +100 C	-40 to +100 C	-50 to +100 C
Vibration	Sine	-	-	$\begin{aligned} & 2 \mathrm{~g} \\ & 20-500 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~g} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~g} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$
	Random	-	-	$\begin{aligned} & 0.04 \mathrm{~g}^{2} / \mathrm{Hz} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~g}^{2} / \mathrm{Hz} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 0.1 \mathrm{~g}^{2} / \mathrm{Hz} \\ & 20-2000 \mathrm{~Hz} \end{aligned}$
Shock		-	-	$20 \mathrm{~g}, 11 \mathrm{~ms}$	$30 \mathrm{~g}, 11 \mathrm{~ms}$	$40 \mathrm{~g}, 11 \mathrm{~ms}$
Humidity		$0 \text { to } 95 \% \text {, }$ non-condensing	0 to 100\%	0 to 100\%	0 to 100%	0 to 100\%
Conformal coating			Conformal coating	Conformal coating, extended temperature range devices	Conformal coating, extended temperature range devices, Thermal conduction assembly	Conformal coating, extended temperature range devices, Thermal conduction assembly, Epoxy bonding for devices
Testing		Functional, Temperature cycling	Functional, Temperature cycling, Wide temperature testing	Functional, Temperature cycling, Wide temperature testing Vibration, Shock	Functional, Temperature cycling, Wide temperature testing Vibration, Shock	Functional, Testing per MIL-STD-810G for vibration, shock, temperature, humidity

Minimum lot sizes and NRE charges may apply. Contact sales support for pricing and availability.

FMC-500M

Standard Features

Analog Inputs	
Inputs	2
Input Type	Single ended; AC or DC coupled
Nominal Input Impedance	50 ohm
A/D Device	Analog Devices AD9684 (500MSPS, 14-bit)
Resolution	$14-$ bit
ADC Sample Rate	50 MHz to 500 MHz
Input Bandwidth	$500 \mathrm{MHz}(-3 \mathrm{~dB}$, est.) (AC-Coupled) $800 \mathrm{MHz} \mathrm{(-3dB}, \mathrm{est)}. \mathrm{(DC-Coupled)}$

Analog Outputs	
Outputs	2
Output Range	+ -1.0V AC or DC-coupled into 50 ohm load.
Output Type	Single ended, AC or DC coupled
Output Impedance	DC coupled versions: 50 ohms AC coupled versions: Approx 150 ohms (DC short)
DAC Device	Analog Devices AD9122BCPZ
DAC Resolution	$16-$ bit
DAC Update Rate	10 MHz to 1200 MHz

*Possible clock and sample rates in an application can depend on hardware configuration, carrier and system design

Clocks and Triggering	
Clock Sources	External, or Internal, based on Texas Instruments LMK04828B. VCO0: 2370 - 2630 MHz VCO1: 2920 - 3080 MHz Est. jitter for 1.25 GHz clock output: $\begin{aligned} & <135 \mathrm{fs}(10 \mathrm{kHz}-20 \mathrm{MHz}) \\ & <150 \mathrm{fs}(100 \mathrm{~Hz}-150 \mathrm{MHz}) \end{aligned}$ (based on 2.5 GHz VCO using $\div 2$ output divider)
PLL Reference	External or 100 MHz on-card 100 MHz ref is $\pm 50 \mathrm{ppm} 0$ to +70 C
PLL Resolution	$\geq 4.77 \mathrm{kHz}$ using external reference (Assumes PLL is configured with 16,383 divider ratio. Requires adjustment of on-board PLL filter and parameters.) $\leq 1 \mathrm{MHz}$ using internal reference. (Note that this refers to VCO resolution. See "PLL Notes" below for further details.)
Phase Noise	$-130 \mathrm{dBc} / \mathrm{Hz} @ 100 \mathrm{kHz}$ offset (measured at reference frequency)
Triggering	External, software, acquire N frame Decimation 1:1 to 1:4095 in FPGA Channel Clocking All channels are synchronous Multi-card Synchronization External triggering input is used to synchronize sample clocks or an external clock and trigger may be used.

FMC-500M

Analog Channels Crosstalk	Adjacent Channel	<-70	dB	Measured on terminated victim channel, other 95\% FS 70.1 MHz sine
	A / D to/from D/A	<-90	dB	Measured on terminated victim channel, other 95\% FS 70.1 MHz sine

FMC Interface	
IO	LA[33:0] pairs, HA[22:0] pairs, HB[12:0] pairs
IO Standards	FMC compliant. Differential (LVDS) or LVCMOS (1.7-3.3V) Refer to block diagram (p.3) and Pin Assignment (pp. 12 - 16) for details.
Required voltages	$3.3 \mathrm{~V}, 12 \mathrm{~V}$ VADJ $=1.7$ to 3.3 V

*Possible rates in an application can depend on hardware configuration, carrier and system design

Power		
All AC coupled	Total	9.52W (12.16W if external Vadj current is included)
	3.3 V	$846.1 \mathrm{~mA} \mathrm{(2.79} \mathrm{W)}$
	12 V	$560.3 \mathrm{~mA}(6.73 \mathrm{~W})$
	$\begin{aligned} & 2.5 \mathrm{~V} \\ & \text { Vadj } \end{aligned}$	$<1.2 \mathrm{~A}(2.64 \mathrm{~W})$
All DC coupled	Total	11.61W (14.25W if external Vadj current is included)
	3.3 V	$846.1 \mathrm{~mA} \mathrm{(2.79} \mathrm{W)}$
	12 V	734.5 mA (8.82 W)
	$\begin{aligned} & 2.5 \mathrm{~V} \\ & \text { Vadj } \end{aligned}$	$<1.2 \mathrm{~A}$ (2.64 W)
Heat Sinking		Conduction cooling supported, system level thermal design may be required

FMC-500M

A/D ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range at $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter		Typ	Units	Notes
A/D Channels				
Bandwidth		800	MHz	$-3 \mathrm{~dB}, \mathrm{DC}$ coupled inputs
		500	MHz	$-3 \mathrm{~dB}, \mathrm{AC}$ coupled inputs
Flatness		+/-0.4	dB	50 to $500 \mathrm{MHz}, \mathrm{AC}$ Coupled
		+/-0.5	dB	0 to 500 MHz , DC Coupled
Range	AC Coupled	2	Vpp	Nominal
		10	dBm	Nominal in a 50 Ohm system
		2.6	Vpp	Absolute maximumz
		+/-10	V	DC withstanding from 0 V
	DC Coupled	+/-0.42	V	Nominal from 0V
		2.5	dBm	Nominal in a 50 Ohm system
		+/-1	V	Absolute maximum from 0 V
SNR		67.8, 62.3	dB	Fin $=10 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at $500 \mathrm{MSPS} ;$ AC,DC Coupled
		65.0, 61.6	dB	Fin $=170 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at $500 \mathrm{MSPS} ;$ AC,DC Coupled
		56.4, 52.7	dB	Fin $=765 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 500 MSPS ; AC, DC Coupled
ENOB		$10.9,10.0$	bits	Fin $=10 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 500 MSPS ; AC, DC Coupled
		10.3, 9.9	bits	Fin $=170 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at $500 \mathrm{MSPS} ;$ AC,DC Coupled
		9.0, 8.0	bits	Fin $=765 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 500 MSPS ; AC, DC Coupled
SFDR		81.7, 78.5	dB	Fin $=10 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at $500 \mathrm{MSPS} ;$ AC,DC Coupled
		75.5, 73.6	dB	Fin $=170 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at $500 \mathrm{MSPS} ;$ AC, DC Coupled
		65.5, 55.0	dB	Fin $=765 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 500 MSPS ; AC, DC Coupled
THD		-79.6, -78.0	dBc	Fin $=10 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at $500 \mathrm{MSPS} ;$ AC,DC Coupled
		-75.0, -73.0	dBc	Fin $=170 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 500 MSPS ; AC, DC Coupled
		-64.3, -51.0	dBc	Fin $=765 \mathrm{MHz}, 95 \% \mathrm{FS}$, sine sampled at 500 MSPS ; AC, DC Coupled
NSD		-153 dBFS / Hz		Fin $=30 \mathrm{MHz}$, sine sampled at 500 MSPS
Offset Error (absolute value maximum)		1	mV	Factory calibration, average of 64 K samples after warmup.
Gain Error (absolute value maximum)		0.5	\%	Factory calibration after warmup.

FMC-500M

D/A ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range at $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Typ	Units	Notes
DAC Channels			
Analog Output Range	1000	mVpp	Typical, AC Coupled
	1000	mVpp	Typical, DC Coupled
Analog Output Bandwidth	600	MHz	DC Coupled, no sinc compensation
	600	MHz	AC Coupled, no sinc compensation
Output Amplitude Variation	0.7	dB	0-100 MHz, DC Coupled, no sinc compensation
	0.8	dB	1-100 MHz, AC Coupled, no sinc compensation
SFDR	68	dB	20 MHz sine output, 1.2 dBm , DC coupled
	70	dB	20 MHz sine output, 1.2 dBm , AC coupled
S/N	59.7	dB	70.1 MHz sine output, -6 dBfs , AC coupled
	58	dB	70.1 MHz sine output, -6 dBfs , DC coupled
THD	-62	dB	70.1 MHz sine output, -6 dBfs , AC coupled
	-49	dB	70.1 MHz sine output, -6 dBfs , DC coupled
Intermodulation Distortion	<-75	dB	$70+/-0.1 \mathrm{MHz},-6 \mathrm{dBfs}$, AC Coupled
Channel Crosstalk	<-85	dB	Aggressor $=125.1 \mathrm{MHz},-3 \mathrm{dBfs}$ adjacent channel
Noise floor	-100	dB	AC or DC output
Gain Error	<0.5	\% of FS	Calibrated
Offset Error	<10	mV	Calibrated

FMC-500M

Notes

Gain Definition

FMC-500 is specified and tested with a 50 Ohm source impedance (unless otherwise noted). The FMC-500 nominal gain is approximately 1 X or 0 dB when calibrated, the voltage at the FMC-500 input equals the digital reading output. The internal hardware (raw) gain of the FMC-500 may be different, for example when DC coupled the A/D IC sees about twice the voltage applied at the FMC-500 input.

Variations in source impedance change the system gain. The 50 Ohm terminations in a RF system are rarely physical resistors (they are the Thévenin equivalent of the circuit). At lower input frequencies 50 Ohm source terminations are not common but are needed for continuity with higher frequency 50 Ohm measurements. This source 50 Ohm series termination forms a voltage divider with the FMC-500 input impedance reducing the source voltage by approximately $1 / 2$ at the FMC-500 input. Replacing it with a series 0 Ohm source resistance will change the system gain about 2 X in Voltage or 6 dB .

Digital Calibration Note

The FMC-500 can be digitally calibrated for offset and gain. However if the signal is clipped (outside the A/D range) the information is lost, so the raw gain is typically designed for a signal level at the A/D that is slightly less than A/D Full Scale in the bandwidth of interest to allow the nominal input range to be measured accurately without clipping when digitally calibrated.

PLL Notes

The output clock is produced by an integer division $(1-32)$ of the VCO output. The LMK048028 has two on-chip VCOs: one with a tuning range of $2370-2630 \mathrm{MHz}$ and another with a tuning range of $2920-3080 \mathrm{MHz}$. These tuning ranges limit the range of frequencies that can be produced by integer division. For output clock frequencies below 263 MHz $(2630 \mathrm{MHz} / 10)$ some combination of VCO frequency and division ratio can be chosen to produce any arbitrary output clock frequency because the various divider output frequency ranges overlap (e.g., the VCO0 tuning range combined with a divide by 11 can produce $215.4545-239.0909 \mathrm{MHz}$ while the same VCO divided by 10 can produce $237-263 \mathrm{MHz}$, which overlaps with the divide by 11 range). However, there are tuning range gaps above 263 MHz as shown in Table 1 on p. 11 . For example, neither VCO can be divided by an integer to produce an output frequency of 390 MHz since it lies within the $385-395 \mathrm{MHz}$ tuning gap. The closest frequency above is produced by VCO0 $(2370 \mathrm{MHz} / 6)$ and the closest frequency below is produced by VCO1 ($3080 \mathrm{MHz} / 8$).

Beyond the ability to successfully synthesize a prescribed output clock frequency as outlined above, the tuning resolution limits the ability to realize the corresponding VCO output frequency exactly. The architecture of the loop requires that the VCO frequency be a rational fraction multiple (i.e., a quotient of integers) of the input reference frequency (in this case, 100 MHz). Two issues limit the achievable resolution: (1) the precision of the rational fraction necessary to produce the necessary VCO frequency and (2) the value of the feedback divide ratio (the numerator of the rational fraction) required to produce that VCO frequency since it affects the stability parameters of the PLL. The required divide ratios are not always obvious - for example, producing 81.6 MHz requires a VCO frequency of $2529.6 \mathrm{MHz}(81.6 \mathrm{MHz} \mathrm{x} 31$), which is $(3162 / 125) \times 100 \mathrm{MHz}$. However, producing 81.7 MHz requires a VCO frequency of $2532.7 \mathrm{MHz}(81.7 \mathrm{MHz} \times 31)$ which is (25327 / 1000) x 100 MHz . For a loop that is nominally designed for a target divide ratio of 2500 , this larger value of N (25327) would result in the loop going nearly unstable unless its component values are changed. To keep this loop stable we can compromise by allowing ourselves to produce a clock frequency that is close to, but not exactly equal to 81.7 MHz . For example, $(1317 / 52) \times 100 \mathrm{MHz}$ would result in a VCO frequency of 2532.692308 MHz and a corresponding output clock frequency of 81.699752 MHz .

FMC-500M

Outdiv	Fmin	Fmax	VCO0	VC01
$10-32$	74.0625	263	X	
Gap	263	263.3333		
9	263.3333	292.2222	X	
10	292	308		X
8	296.25	328.75	X	
9	324.4444	342.2222		X
7	338.5714	375.7143	X	
8	365	385		X
Gap	385	395		
6	395	438.3333	X	
7	417.1429	440		X
Gap	440	474		
5	474	526	X	
Gap	526	584		
5	584	616		X
4	592.5	657.5	X	
Gap	657.5	730		
4	730	770		X
Gap	770	790		
3	790	876.6667	X	
Gap	876.6667	973.3333		
3	973.3333	1026.667		X
Gap	1026.667	1185		
2	1185	1315	X	
Gap	1315	1460		
2	1460	1540		X

Table 1. Range of output clock frequencies showing gaps in the tuning range.

FMC-500M

FMC Connector Pin Assignments

P1	P1 Pin	FMC-500	B1	CLK DIR	3P3V
Pins	Name	Net	B2	GND	GND
A1	GND	GND	B3	GND	GND
A2	DP1_M2C_P	N/C	B4	DP9_M2C_P	N/C
A3	DP1_M2C_N	N/C	B5	DP9_M2C_N	N/C
A4	GND	GND	B6	GND	GND
A5	GND	GND	B7	GND	GND
A6	DP2_M2C_P	N/C	B8	DP8_M2C_P	N/C
A7	DP2_M2C_N	N/C	B9	DP8 M2C N	N/C
A8	GND	GND	B10	GND	
A9	GND	GND	B10	GND	GND
A10	DP3_M2C_P	N/C	B11	GND	GND
A11	DP3_M2C_N	N/C	B12	DP7_M2C_P	N/C
A12	GND	GND	B13	DP7_M2C_N	N/C
A13	GND	GND	B14	GND	GND
A14	DP4_M2C_P	N/C	B15	GND	GND
A15	DP4_M2C_N	N/C	B16	DP6_M2C_P	N/C
A16	GND	GND	B17	DP6_M2C_N	N/C
A17	GND	GND	B18	GND	GND
A18	DP5_M2C_P	N/C	B19	GND	GND
A19	DP5_M2C_N	N/C	B20	GBTCLK1_M2C_P	N/C
A20	GND	GND	B21	GBTCLK1_M2C_N	N/C
A21	GND	GND	B22	GND	GND
A22	DP1_C2M_P	N/C	B23	GND	GND
A23	DP1_C2M_N	N/C	B24	DP9_C2M_P	N/C
A24	GND	GND	B25	DP9_C2M_N	N/C
A25	GND	GND	B26	GND	GND
A26	DP2_C2M_P	N/C	B27	GND	GND
A27	DP2_C2M_N	N/C	B28	DP8_C2M_P	N/C
A28	GND	GND	B29	DP8_C2M_N	N/C
A29	GND	GND	B30	GND	GND
A30	DP3_C2M_P	N/C			
A31	DP3_C2M_N	N/C	B31	GND	GND
A32	GND	GND	B32	DP7_C2M_P	N/C
A33	GND	GND	B33	DP7_C2M_N	N/C
A34	DP4_C2M_P	N/C	B34	GND	GND
A35	DP4_C2M_N	N/C	B35	GND	GND
A36	GND	GND	B36	DP6_C2M_P	N/C
A37	GND	GND	B37	DP6_C2M_N	N/C
A38	DP5_C2M_P	N/C	B38	GND	GND
A39	DP5_C2M_N	N/C	B39	GND	GND
A40	GND	GND	B40	RESO	N/C

FMC-500M

FMC Connector Pin Assignments (cont.)

C1	GND	GND	D1	PG_C2M	FMC_PG_C2M
C2	DPO_C2M_P	N/C	D2	GND	GND
C3	DPO_C2M_N	N/C	D3	GND	GND
C4	GND	GND	D4	GBTCLKO_M2C_P	N/C
C5	GND	GND	D5	GBTCLKO_M2C_N	N/C
C6	DPO_M2C_P	N/C	D6	GND	GND
C7	DPO_M2C_N	N/C	D7	GND	GND
C8	GND	GND	D8	LA01_P_CC	ADC_D_P2
C9	GND	GND	D9	LA01_N_CC	ADC_D_N2
C10	LA06_P	ADC_FD_B	D10	GND	GND
C11	LA06_N	ADC_SDIO	D11	LA05_P	ADC_D_P5
C12	GND	GND	D12	LA05_N	ADC_D_N5
C13	GND	GND	D13	GND	GND
C14	LA10_P	ADC_SCLK	D14	LA09_P	ADC_D_P7
C15	LA10_N	ADC_CSB_N	D15	LA09_N	ADC_D_N7
C16	GND	GND	D16	GND	GND
C17	GND	GND	D17	LA13_P	ADC_D_P13
C18	LA14_P	ADC_OVR_P	D18	LA13_N	ADC_D_N13
C19	LA14_N	ADC_OVR_N	D19	GND	GND
C20	GND	GND	D20	LA17_P_CC	FPGA_SYSREF_P
C21	GND	GND	D21	LA17_N_CC	FPGA_SYSREF_N
C22	LA18_P_CC	FMC_PLL_SYNC	D22	GND	GND
C23	LA18_N_CC	ADC_FD_A	D23	LA23_P	N/C
C24	GND	GND	D24	LA23_N	N/C
C25	GND	GND	D25	GND	GND
C26	LA27_P	VCXO_PWR_GD	D26	LA26_P	ADC_PWR_EN
C27	LA27_N	N/C	D27	LA26_N	ADC_PWR_GD
C28	GND	GND	D28	GND	GND
C29	GND	GND	D29	TCK	N/C
C30	SCL	FMC_SCL	D30	TDI	N/C
C31	SDA	FMC_SDA	D31	TDO	N/C
C32	GND	GND	D32	3P3VAUX	3P3V_AUX
C33	GND	GND	D33	TMS	N/C
C34	GAO	FMC_G0	D34	TRST_L	N/C
C35	12P0V	12P0V	D35	GA1	FMC_G1
C36	GND	GND	D36	3P3V	3P3V
C37	12P0V	12POV	D37	GND	GND
C38	GND	GND	D38	3P3V	3P3V
C39	3 P 3 V	3P3V	D39	GND	GND
C40	GND	GND	D40	3P3V	3 P 3 V

FMC-500M

FMC Connector Pin Assignments (cont.)

E1	GND	GND	F1	PG_M2C	PG_M2C
E2	HAO1_P_CC	N/C	F2	GND	GND
E3	HA01_N_CC	N/C	F3	GND	GND
E4	GND	GND	F4	HAOO_P_CC	N/C
E5	GND	GND	F5	HAOO_N_CC	N/C
E6	HA05_P	N/C	F6	GND	GND
E7	HA05_N	N/C	F7	HA04_P	N/C
E8	GND	GND	F8	HA04_N	N/C
E9	HA09_P	N/C	F9	GND	GND
E10	HA09_N	N/C	F10	HA08_P	N/C
E11	GND	GND	F11	HA08_N	N/C
E12	HA13_P	N/C	F12	GND	GND
E13	HA13_N	N/C	F13	HA12_P	N/C
E14	GND	GND	F14	HA12_N	N/C
E15	HA16_P	N/C	F15	GND	GND
E16	HA16_N	N/C	F16	HA15_P	N/C
E17	GND	GND	F17	HA15_N	N/C
E18	HA20_P	N/C	F18	GND	GND
E19	HA20_N	N/C	F19	HA19_P	N/C
E20	GND	GND	F20	HA19_N	N/C
E21	HB03_P	DAC_P15	F21	GND	GND
E22	HB03_N	DAC_N15	F22	HB02_P	DAC_EXT_SYNC_P
E23	GND	GND	F23	HB02_N	DAC_EXT_SYNC_N
E24	HB05_P	DAC_P13	F24	GND	GND
E25	HB05_N	DAC_N13	F25	HB04_P	DAC_SCLK
E26	GND	GND	F26	HB04_N	DAC_IRQ\#
E27	HB09_P	DAC_P10	F27	GND	GND
E28	HB09_N	DAC_N10	F28	HB08_P	DAC_P9
E29	GND	GND	F29	HB08_N	DAC_N9
E30	HB13_P	DAC_P7	F30	GND	GND
E31	HB13_N	DAC_N7	F31	HB12_P	DAC_FRAME_P
E32	GND	GND	F32	HB12_N	DAC_FRAME_N
E33	HB19_P	DAC_P1	F33	GND	GND
E34	HB19_N	DAC_N1	F34	HB16_P	DAC_DCI_P
E35	GND	GND	F35	HB16_N	DAC_DCI_N
E36	HB21_P	DAC_P4	F36	GND	GND
E37	HB21_N	DAC_N4	F37	HB20_P	DAC_SDO
E38	GND	GND	F38	HB2O_N	DAC_SDIO
E39	VADJ	VADJ	F39	GND	GND
E40	GND	GND	F40	VADJ	VADJ

FMC-500M

FMC Connector Pin Assignments (cont.)

G1	GND	GND
G2	CLK1_M2C_P	FMC_GCLK1_P
G3	CLK1_M2C_N	FMC_GCLK1_N
G4	GND	GND
G5	GND	GND
G6	LAOO_P_CC	ADC_DCO_P
G7	LAOO_N_CC	ADC_DCO_N
G8	GND	GND
G9	LA03_P	ADC_D_P3
G10	LA03_N	ADC_D_N3
G11	GND	GND
G12	LA08_P	ADC_D_P6
G13	LA08_N	ADC_D_N6
G14	GND	GND
G15	LA12_P	ADC_D_P8
G16	LA12_N	ADC_D_N8
G17	GND	GND
G18	LA16_P	ADC_D_P10
G19	LA16_N	ADC_D_N10
G20	GND	GND
G21	LA20_P	ADC_D_P12
G22	LA20_N	ADC_D_N12
G23	GND	GND
G24	LA22_P	PLL_SDI
G25	LA22_N	PLL_SDO
G26	GND	GND
G27	LA25_P	ADC_PWDN
G28	LA25_N	FMC_TRIG_SEL
G29	GND	GND
G30	LA29_P	FMC_PLL_STATUS_LD1
G31	LA29_N	FMC_PLL_STATUS_LD2
G32	GND	GND
G33	LA31_P	FMC_PLL_CLKIN_SELO
G34	LA31_N	FMC_PLL_CLKIN_SEL1
G35	GND	GND
G36	LA33_P	DAC_RST\#
G37	LA33_N	DAC_CS\#
G38	GND	GND
G39	VADJ	VADJ
G40	GND	GND

H1	VREF_A_M2C	N/C
H2	PRSNT_M2C_L	GND
H3	GND	GND
H4	CLKO_M2C_P	FMC_GCLKO_P
H5	CLKO_M2C_N	FMC_GCLKO_N
H6	GND	GND
H7	LA02_P	ADC_D_P1
H8	LA02_N	ADC_D_N1
H9	GND	GND
H10	LA04_P	ADC_D_P4
H11	LA04_N	ADC_D_N4
H12	GND	GND
H13	LA07_P	ADC_D_PO
H14	LA07_N	ADC_D_NO
H15	GND	GND
H16	LA11_P	ADC_D_P9
H17	LA11_N	ADC_D_N9
H18	GND	GND
H19	LA15_P	ADC_D_P11
H20	LA15_N	ADC_D_N11
H21	GND	GND
H22	LA19_P	FMC_ADC_SYSREF_P
H23	LA19_N	FMC_ADC_SYSREF_N
H24	GND	GND
H25	LA21_P	ADC_EXT_SYNC_P
H26	LA21_N	ADC_EXT_SYNC_N
H27	GND	GND
H28	LA24_P	PLL_RESET
H29	LA24_N	PLL_GPO
H30	GND	GND
H31	LA28_P	PLL_SCK
H32	LA28_N	PLL_CS_N
H33	GND	GND
H34	LA30_P	VCXO_PWR_EN
H35	LA30_N	FMC_TEMP_ALERT
H36	GND	GND
H37	LA32_P	DAC_PWR_EN
H38	LA32_N	DAC_PWR_GD
H39	GND	GND
H40	VADJ	VADJ

FMC-500M

FMC Connector Pin Assignments (cont.)

J1	GND	GND
J2	CLK3_BIDIR_P	CLK3_BIDIR_P
J3	CLK3_BIDIR_N	CLK3_BIDIR_N
J4	GND	GND
J5	GND	GND
J6	HA03_P	N/C
J7	HA03_N	N/C
18	GND	GND
19	HA07_P	N/C
J10	HA07_N	N/C
J11	GND	GND
J12	HA11_P	N/C
J13	HA11_N	N/C
J14	GND	GND
J15	HA14_P	N/C
J16	HA14_N	N/C
J17	GND	GND
J18	HA18_P	N/C
J19	HA18_N	N/C
J 20	GND	GND
J21	HA22_P	N/C
J22	HA22_N	N/C
J 23	GND	GND
J24	HB01_P	DAC_P14
J 25	HB01_N	DAC_N14
J26	GND	GND
J 27	HB07_P	DAC_P11
J28	HB07_N	DAC_N11
J29	GND	GND
J30	HB11_P	DAC_P8
J 31	HB11_N	DAC_N8
J32	GND	GND
J33	HB15_P	DAC_P3
J34	HB15_N	DAC_N3
J35	GND	GND
J36	HB18_P	DAC_P2
J 37	HB18_N	DAC_N2
J38	GND	GND
J39	VIO_B_M2C	VADJ
J40	GND	GND

K1	VREF_B_M2C	N/C
K2	GND	GND
K3	GND	GND
K4	CLK2_BIDIR_P	CLK2_BIDIR_P
K5	CLK2_BIDIR_N	CLK2_BIDIR_N
K6	GND	GND
K7	HA02_P	N/C
K8	HA02_N	N/C
K9	GND	GND
K10	HA06_P	N/C
K11	HA06_N	N/C
K12	GND	GND
K13	HA10_P	N/C
K14	HA10_N	N/C
K15	GND	GND
K16	HA17_P_CC	N/C
K17	HA17_N_CC	N/C
K18	GND	GND
K19	HA21_P	N/C
K20	HA21_N	N/C
K21	GND	GND
K22	HA23_P	N/C
K23	HA23_N	N/C
K24	GND	GND
K25	HBOO_P_CC	DAC_FPGA_CLK_P
K26	HB00_N_CC	DAC_FPGA_CLK_N
K27	GND	GND
K28	HB06_P_CC	DAC_P12
K29	HB06_N_CC	DAC_N12
K30	GND	GND
K31	HB10_P	DAC_P6
K32	HB10_N	DAC_N6
K33	GND	GND
K34	HB14_P	DAC_P5
K35	HB14_N	DAC_N5
K36	GND	GND
K37	HB17_P_CC	DAC_PO
K38	HB17_N_CC	DAC_NO
K39	GND	GND
K40	VIO_B_M2C	VADJ

FMC-500M

Representative ADC Performance

FMC-500M

Frequency Response [dB] - AC coupled (Clock $=500 \mathrm{MHz}$)
Note: 5 MHz data is provided for informational purposes only - it is outside the valid frequency range specified for the input transformer (> 30 MHz).

Frequency Response [dB] - DC coupled (Clock $=500 \mathrm{MHz})$

SNR \& SFDR Performance versus Frequency - AC coupled Note 1: Tested with bandpass filtering applied to signal source. Note 2 : Tested without filtering (noise partially reflects source signal quality).

SNR \& SFDR versus Frequency for 7 dBm and 10 dBm Input - DC coupled.

FMC-500M

Representative DAC Performance

AC-Coupled Output Signal Quality
Fout $=100 \mathrm{MHz}, F s=615 \mathrm{MHz}$.
(Resolution BW =5.1 Hz)

DC-Coupled Output Signal Quality
Fout $=100 \mathrm{MHz}, ~ F s=615 \mathrm{MHz}$.
(Resolution BW $=5.1 \mathrm{~Hz}$)

AC-Coupled Output Signal Quality
Fout $=100 \mathrm{MHz}, F s=615 \mathrm{MHz}$.
(Resolution BW =1 Hz)

DC-Coupled Output Signal Quality
Fout $=100 \mathrm{MHz}, \mathrm{Fs}=615 \mathrm{MHz}$
(Resolution BW =1 Hz)

FMC-500M

AC-Coupled Output Frequency Response
Output level [dBm] of fundamental in blue, total power output in violet For reference sinc rolloff is shown in red, and compensated output level in green.

DC-Coupled Output Frequency Response
Output level [dBm] of fundamental in blue, total power output in violet For reference sinc rolloff is shown in red, and compensated output level in green.

FMC-500M

IMPORTANT NOTICES

Innovative Integration Incorporated reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Innovative Integration's terms and conditions of sale supplied at the time of order acknowledgment.

Innovative Integration warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Innovative Integration's standard warranty. Testing and other quality control techniques are used to the extent Innovative Integration deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Innovative Integration assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Innovative Integration products. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Innovative Integration does not warrant or represent that any license, either express or implied, is granted under any Innovative Integration patent right, copyright, mask work right, or other Innovative Integration intellectual property right relating to any combination, machine, or process in which Innovative Integration products or services are used. Information published by Innovative Integration regarding third-party products or services does not constitute a license from Innovative Integration to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Innovative Integration under the patents or other intellectual property of Innovative Integration.

Reproduction of information in Innovative Integration data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice.

Innovative Integration is not responsible or liable for such altered documentation. Resale of Innovative Integration products or services with statements different from or beyond the parameters stated by Innovative Integration for that product or service voids all express and any implied warranties for the associated Innovative Integration product or service and is an unfair and deceptive business practice. Innovative Integration is not responsible or liable for any such statements.

For further information on Innovative Integration products and support see our web site:
www.innovative-dsp.com
Mailing Address: Innovative Integration, Inc.
741 Flynn Road, Camarillo, California 93012
Copyright © 2007 , 2014, 2015, 2016, Innovative Integration, Incorporated

