

FMC Module with eight 16-bit, 500 kSPS A/D channels; eight 16-bit D/A channels with on-board timing controls.

V1.6

FEATURES

- Eight A/D Input Channels
 - 500 kSPS, 16-bit A/D
 - Differential, Gain Programmable
- Eight D/A Output Channels
 - ο 0.5µs Settling Time, 16-bit D/A
 - $\circ \pm 10V$ Output Range
- Sample clocks and timing and controls
 - 10 MHz, ±250 ppb stability on-board reference.
 - o Programmable PLL
 - Programmable Clock Frequency as low as 3.05 kHz
 - o Integrated with FMC triggers
- FMC module, VITA 57.1
 - High Pin Count no SERDES required
 - Compatible with 2.5V VADJ
 - Power monitor and controls
- 12 W typical
- Conduction Cooling per VITA 20 subset
- Environmental ratings for -40 to 85C

9g RMS sine, 0.1g²/Hz random vibration

APPLICATIONS

- Industrial Instrumentation Systems
- Real-Time Control Systems
- Sensor Data Recording and Playback
- Machine Learning Systems

DESCRIPTION

The FMC-SERVO module features eight simultaneously sampling A/D and DACs, for use with an FPGA computing core. Low latency SAR A/D and fast-settling DACs support real-time servo control applications. The programmable input range and high input interface may connect directly to many sensors, while the output is capable of driving many transducers. Front panel digital IO can also be used as PWM or process controls.

Clock and trigger controls include support for consistent servo loop timing, counted frames, software triggering and external triggering. The sample rate clock is either an external clock or on-board programmable PLL clock source

The FMC-Servo power consumption is 12 W for typical operation. The module may be conduction cooled using VITA20 standard and a heat spreading plate. Ruggedization levels for wide-temperature operation from -40 to +85C operation and 0.1 g²/Hz vibration. Conformal coating is available.

Support logic in VHDL is available for integration with FPGA carrier cards. Contact <u>ISISales@Molex.com</u>. Specific support for Innovative carrier cards includes integration with Framework Logic tools that support VHDL developers.

Software tools for Innovative carrier cards include host development C++ libraries and drivers for Windows and Linux, 64-bit. Application examples demonstrating the module features are provided.

* Sampling rates in an application depend on carrier and system design

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Interconnect Systems International, LLC products and disclaimers thereto at the end of this datasheet. All trademarks are the property of their respective owners.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Interconnect Systems International, LLC standard warranty. Production processing does not necessarily include testing of all parameters.

This electronics assembly can be damaged by ESD. Interconnect Systems International, LLC recommends that all electronic assemblies and components circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

Product	Part Number	Description
FMC-Servo	80339-0-L0 80339-1-L0 80339-2-L0	FMC-SERVO DIFFERENTIAL INPUTS/OUTPUTS FMC-SERVO SINGLE ENDED INPUTS/OUTPUTS FMC-SERVO DIFFERENTIAL INPUTS/OUTPUTS, INTERPOSER EXTENSION
Carrier Cards	80382-0-L0 80382-1-L0	PEX7-COP K325T -2 SPEED IND. TEMP. PEX7-COP K410T -2 SPEED IND. TEMP.
Embedded PCs	90502-3-L0 90502-4-0-L0	EPC-K7 INSTRUMENT WITH K325T2 FPGA EPC-K7 INSTRUMENT WITH K410T2 FPGA
Cables & Breakouts	80350-1-L0	FMC BREAKOUT ALL SMA WITH CABLE (Note 1)

Note 1. Options without SMA and Cable are available.

BLOCK DIAGRAM

FMC-SERVO Simplified Block Diagram

Figure 1. FMC-Servo Block Diagram

Standard Features

Analog Inputs		Clocks and Triggering		
Inputs	8	Clock Sources	External, or Internal, based on Analog	
Input Range	+/- 10V (Gain x1)		Devices AD9510 followed by	
Input Type	Single Ended, DC Coupled		AD9508.	
Sizo	Supports 84 x 55 mm modules			
SIZE	(mini size)		Est. Jitter < 350 fs RMS	
	$> 1 M\Omega$ (DC, all versions).		VCXO: 100 – 140 MHz	
	Dynamic impedance = $50 \text{ ohms}(-1)$	PLL Reference	External or 10 MHz on-card	
Nominal Input	config.)		10 MHz ref is ± 250 ppb -40 to $\pm 85C$	
Impedance	Dynamic impedance = 100 ohms (-	PLL Resolution	> 12 kHz using 10 MHz reference	
	0 config.)		Assumes PLL's "B" divider is	
	(pole = 165 ns)		configured with 8,191 divider ratio.	
A/D Device	Texas Instruments ADS8568 (500		May require adjustment of on-board	
	KSPS, 16-bit)		PLL filter and parameters. This	
Resolution	16-bit		A D0508 divisors to colculate	
ADC	<= 500 kSPS		AD9508 divisors to calculate	
Sample Rate			See "PLI Notes" below for additional	
Input Bandwidth	250 kHz (-3dB, est.) (DC-Coupled)		information	
Analog Outputs		Phase Noise	155 dBo / Hz @ 100 kHz offset	
Outputs	8	I hase ivoise	(measured at reference frequency	
Output Range	$\pm 10V$ DC-coupled into high		phase noise at output will depend on	
	impedance load.		PLL gain and output divisors)	
Output Type	Single ended, AC or DC coupled	Triggering	External software acquire N frame	
	100 ohms	11188011118	Decimation	
Output Impedance	(back terminated to guard against		1:1 to 1:4095 in FPGA	
D + G D +	overshoot/undershoot)		Channel Clocking	
DAC Device	Burr-Brown (T1) DAC8822 (x 4)		All channels are synchronous	
DAC Resolution	16-bit		Multi-card Synchronization	
DAC Update	<= 1 MHz		External triggering input is used to	
Rate			synchronize sample clocks or an	
FMC Interface			external clock and trigger may be	
Ю	LA[33:0] pairs, HA[22:0] pairs,		used.	
	HB[12:0] pairs	Physicals		

	LA: LVDS
IO Standards	HA: LVDS
	HB : LVCMOS 1.7V to 3.3V
Required	3.3V, 12V
Voltages	VADJ = 1.7 to 3.3 V
FMC Power	
T-4-1	12.68 W (15W incl. full external
Total	Vadj load).
3.3V	< 20 mA (66 mW)
12V	1002 mA (12.02 W)
2.5V Adj	< 1.2A (2.64 W)
	Conduction cooling supported,
Heat Sinking	system level thermal design may be
	required

Form Factor	FMC VITA 57.1 single-width
Size	76.5 x 69 mm
	10 mm mounting height
Weight	180g (approximate, contact factory if
	critical to application)
Hazardous	Lead-free and RoHS compliant
Materials	_

Operating Environment Ratings

The FMC-Servo can be used in a variety of applications with different operating environment temperature, shock and vibration levels. Contact Sales for available Ruggedization Levels.

Environm <er></er>	ent Rating	LO	L1	L2	L3	L4
Environme	nt	Office, controlled lab	Outdoor, stationary	Industrial	Vehicles	Military and heavy industry
Application	15	Lab instruments, research	Outdoor monitoring and controls	Industrial applications with moderate vibration	Manned vehicles	Unmanned vehicles, missiles, oil and gas exploration
Cooling		Forced Air 2 CFM	Forced Air 2 CFM	Conduction	Conduction	Conduction
Operating Temperatur	re	0 to +50C	-40 to +85C	-20 to +65C	-40 to +70C	-40 to +85C
Storage Ter	mperature	-20 to +90C	-40 to +100C	-40 to +100C	-40 to +100C	-50 to +100C
Vibration	Sine	-	-	2g 20-500 Hz	5g 20-2000 Hz	10g 20-2000 Hz
	Random	-	-	0.04 g ² /Hz 20-2000 Hz	0.1 g ² /Hz 20-2000 Hz	0.1 g ² /Hz 20-2000 Hz
Shock		-	-	20g, 11 ms	30g, 11 ms	40g, 11 ms
Humidity		0 to 95%, non-condensing	0 to 100%	0 to 100%	0 to 100%	0 to 100%
Conformal coating			Conformal coating	Conformal coating, extended temperature range devices	Conformal coating, extended temperature range devices, Thermal conduction assembly	Conformal coating, extended temperature range devices, Thermal conduction assembly, Epoxy bonding for devices
Testing		Functional, Temperature cycling	Functional, Temperature cycling, Wide temperature testing	Functional, Temperature cycling, Wide temperature testing Vibration, Shock	Functional, Temperature cycling, Wide temperature testing Vibration, Shock	Functional, Testing per MIL- STD-810G for vibration, shock, temperature, humidity

ELECTRICAL CHARACTERISTICS

A/D ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range at 0°C to +60°C, unless otherwise noted.

Parameter		Тур	Units	Notes	
A/D Channels (t	A/D Channels (typical)				
Static (DC input) IN	NL	within ±2	LSBs	Based on deviation from linear regression straight-line fit to data	
Bandwidth	Bandwidth		kHz	-3dB, DC coupled inputs (includes input filtering)	
Range	DC Coupled	+/-10	V	Absolute maximum from ground, gain setting = 1	
SNR		83.4	dB	Fin = 1 kHz, 100 kSPS	
THD		-75.9	dBc	Fin = 1 kHz, 100 kSPS	
SFDR		77.5	dB	Fin = 1 kHz, 100 kSPS	
Offset Error (absolute value maximum)		1	mV	After factory calibration: average of 64K samples after warm-up.	
Gain Error (absolut	e value maximum)	0.5	%	After factory calibration: gain setting =1, after warm-up.	

D/A ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range at 0°C to +60°C, unless otherwise noted.

Parameter	Тур	Units	Notes
DAC Channels (Typical)		1	
Analog Output Range	+/- 10	V	Typical, DC Coupled
Static (DC output) INL	within ±2	LSBs	Based on deviation from linear regression straight-line fit to data
Analog Output Bandwidth	400	kHz	including response of output active filter excluding sample-and-hold effect (sinc roll-off)
SFDR	75.4	dBc	Fout = 1 kHz, Fs = 420 kHz, 20 Vpp (DAC to ADC end- to-end)
SNR	69.7	dBc	Fout = 1 kHz, Fs = 420 kHz, 20 Vpp (DAC to ADC end- to-end)
THD	-73.2	dBc	Fout = 1 kHz, Fs = 420 kHz, 20 Vpp (DAC to ADC end- to-end)
Channel Crosstalk	<-64	dB	Aggressor = 200 kHz, adjacent channel.
Noise floor	-121.3	dBFS/ Hz	Fout = 1 kHz, Fs = 420 kHz, 20 Vpp (based on 64K FFT, DAC to ADC end-to-end)
Gain Error	<0.5	% of FS	After factory calibration (and after warm-up)
Offset Error	<10	mV	After factory calibration (and after warm-up)

Notes

Gain Definition

FMC-Servo is specified and tested with a low source impedance (ideal voltage source or 50 ohm source impedance, both negligible compared to the input impedance of the board). The FMC-Servo nominal gain is calibrated at the 1X or 0dB setting, resulting in a full-scale output. The internal hardware (raw) gain of the FMC-Servo may be different, such as when the particular board being calibrated comes in at a gain slightly lower than unity and the ADC output is digitally corrected to achieve overall accuracy.

Digital Calibration Note

The FMC-Servo can be digitally calibrated for offset and gain. However if the signal is clipped (outside the A/D range) the information is lost, so the raw gain is typically designed for a signal level at the A/D that is slightly less than A/D Full Scale in the bandwidth of interest to allow the nominal input range to be measured accurately without clipping when digitally calibrated.

PLL Notes

The output clock is produced by an integer division (1~32)*(1~1,024) of the VCXO output. The VCXO has a tuning range of 100 - 140 MHz. This tuning range limits the range of frequencies that can be produced by integer division. For output clock frequencies below 46.67 MHz (140 MHz / 3) some combination of VCXO frequency and division ratio can be chosen to produce any arbitrary output clock frequency because the various divider output frequency ranges overlap. For example, if the AD9510 divisor is chosen to be 32 and the AD9508 divisor is chosen to be 1024, the tuning range is 3051.758 kHz - 4272.461 kHz. The next highest range (31×1024) is 3150.202 kHz - 4410.282 kHz which overlaps the lower range. Table 1 shows one possible programming scheme that ensures continuous coverage between an output frequency of 3.05 kHz and 46.67 MHz.

Beyond the ability to successfully synthesize a prescribed output clock frequency as outlined above, the tuning resolution limits the ability to realize the corresponding VCO output frequency exactly. The architecture of the loop requires that the VCO frequency be a rational fraction multiple (i.e., a quotient of integers) of the input reference frequency (in this case, 10 MHz). Two issues limit the achievable resolution: (1) the precision of the rational fraction necessary to produce the necessary VCO frequency and (2) the value of the feedback divide ratio (the numerator of the rational fraction) required to produce that VCO frequency since it affects the stability parameters of the PLL. The required divide ratios are not always obvious – for example, a number of VCXO frequencies (within the tuning range) are available to produce a 501 kHz output: 100.2 MHz (501 kHz x 200), 100.7 MHz, (501 kHz x 202), etc. through 139.779 MHz (501 kHz x 279).

Of the above options, the best possible choice of VCXO frequency would be one in which the numerator and denominator of the rational fraction are the smallest possible numbers. From this standpoint 100.7 MHz (10 MHz x (501/50)) is preferable to 139.779 MHz (10 MHz x (2530/181)). With such a wide tuning range (\pm 16.6 %) there a number of choices available which would produce the same output frequency. Also, which particular VCXO frequencies would result in the lowest possible divisors is not always obvious – 125.25 MHz (501 kHz x 250) results in even smaller divisors (10 MHz x (238/19)) than does 100.7 MHz.

AD9508	AD9510		
Div	Div	Fmin	Fmax
1024	3 - 32	3.05 kHz	45.57 kHz
96	3 - 32	45.57 kHz	486.11 kHz
9	3 - 32	486.11 kHz	5.185 MHz
1	3 - 32	5.185 MHz	46.667 MHz

Table 1. Range of output clock frequencies showing continuous coverage in the tuning range.

FMC Connector Pin Assignments

P1	P1 Pin	FMC-Servo	81	CLK_DIR
Pins	Name	Net	82	GND
Al	GND	GND	83	GND
AZ	DP1_M2C_P	N/C	84	DP9_M2C_P
A3	DP1_M2C_N	N/C	85	DP9_M2C_N
A4	GND	GND	86	GND
A5	GND	GND	87	GND
A6	DP2_M2C_P	N/C	88	DP8 M2C P
A7	DP2_M2C_N	N/C	89	DP8 M2C N
AB	GND	GND	810	GND
A9	GND	GND	811	GND
A10	DP3_M2C_P	N/C	817	DR7 M3C R
A11	DP3_M2C_N	N/C	812	DP7_M2C_P
A12	GND	GND	513	DP7_M2C_N
A13	GND	GND	814	
A14	DP4_M2C_P	N/C	815	GND
A15	DP4_M2C_N	N/C	816	DP6_M2C_P
A16	GND	GND	817	DP6_M2C_N
A17	GND	GND	818	GND
A18	DP5_M2C_P	N/C	819	GND
A19	DP5_M2C_N	N/C	820	GBTCLK1_M
A2.0	GND	GND	821	GBTCLK1_M
A21	GND	GND	822	GND
A2 2	DP1_C2M_P	N/C	823	GND
A2 3	DP1_C2M_N	N/C	824	DP9_C2M_P
AZ 4	GND	GND	825	DP9_C2M_N
A2.5	GND	GND	826	GND
A2.6	DP2_C2M_P	N/C	827	GND
A2.7	DP2_C2M_N	N/C	828	DP8_C2M_P
A2.8	GND	GND	829	DP8 C2M N
A2.9	GND	GND	830	GND
A30	DP3_C2M_P	N/C	831	GND
A31	DP3_C2M_N	N/C	837	DR7_C3M_R
A3 2	GND	GND	832	DP7_C2M_P
A3 3	GND	GND	824	
A34	DP4_C2M_P	N/C	534	GND
A3 5	DP4_C2M_N	N/C	835	GND
A36	GND	GND	836	DP6_C2M_P
A37	GND	GND	837	DP6_C2M_N
A38	DP5_C2M_P	N/C	838	GND
A39	DP5_C2M_N	N/C	839	GND
A40	GND	GND	B40	RESO

81	CLK_DIR	3 P3V
82	GND	GND
83	GND	GND
84	DP9_M2C_P	N/C
85	DP9_M2C_N	N/C
86	GND	GND
87	GND	GND
88	DP8_M2C_P	N/C
89	DP8_M2C_N	N/C
810	GND	GND
811	GND	GND
812	DP7_M2C_P	N/C
813	DP7_M2C_N	N/C
B14	GND	GND
815	GND	GND
816	DP6_M2C_P	N/C
817	DP6_M2C_N	N/C
818	GND	GND
819	GND	GND
820	GBTCLK1_M2C_P	N/C
821	GBTCLK1_M2C_N	N/C
822	GND	GND
B23	GND	GND
B24	DP9_C2M_P	N/C
B25	DP9_C2M_N	N/C
B26	GND	GND
B27	GND	GND
828	DP8_C2M_P	N/C
829	DP8_C2M_N	N/C
830	GND	GND
831	GND	GND
832	DP7_C2M_P	N/C
833	DP7_C2M_N	N/C
834	GND	GND
835	GND	GND
836	DP6_C2M_P	N/C
837	DP6_C2M_N	N/C
838	GND	GND
839	GND	GND
840	RESO	N/C

C1	GND	GND	D1
C2	DP0_C2M_P	N/C	DZ
C3	DP0_C2M_N	N/C	D3
C4	GND	GND	D4
C5	GND	GND	D5
C6	DP0_M2C_P	N/C	D6
C7	DP0_M2C_N	N/C	D7
C8	GND	GND	D8
C9	GND	GND	D9
C10	LA06_P	ADC_D0	D10
C11	LA06_N	ADC_D1	D11
C12	GND	GND	D12
C13	GND	GND	D13
C14	LA10_P	ADC_D2	D14
C15	LA10_N	ADC_D3	D15
C16	GND	GND	D16
C17	GND	GND	D17
C18	LA14_P	ADC_D4	D18
C19	LA14_N	ADC_D5	D19
C20	GND	GND	D20
C21	GND	GND	D21
C22	LA18_P_CC	ADC_D6	D22
C23	LA18_N_CC	ADC_D7	D23
C24	GND	GND	D24
C25	GND	GND	D25
C26	LA27_P	FMC_ADC_CS_N	D26
C27	LA27_N	FMC_ADC_RD_N	D27
C28	GND	GND	D 28
C29	GND	GND	D 29
C30	SCL	FMC_SCL	D 30
C31	SDA	FMC_SDA	D31
C32	GND	GND	D 32
C33	GND	GND	D 33
C34	GA0	FMC_G0	D34
C35	12POV	12POV	D35
C36	GND	GND	D36
C37	12POV	12POV	D37
C38	GND	GND	D 38
C39	3P3 V	3 P3V	D 39

D1	PG_C2 M	FMC_PG_C2M
DZ	GND	GND
D3	GND	GND
D4	GBTCLK0_M2C_P	N/C
D5	GBTCLK0_M2C_N	N/C
D6	GND	GND
D7	GND	GND
D8	LA01_P_CC	ADC_D8
D9	LA01_N_CC	ADC_D9
D10	GND	GND
D11	LA05_P	ADC_D10
D12	LA05_N	ADC_D11
D13	GND	GND
D14	LA09_P	ADC_D12
D15	LA09_N	ADC_D13
D16	GND	GND
D17	LA13_P	ADC_D14
D18	LA13_N	ADC_D15
D19	GND	GND
D20	LA17_P_CC	FMC_ADC_STBY_N
D21	LA17_N_CC	FMC_ADC_RESET
D22	GND	GND
D23	LA23_P	REF_SEL
D24	LA23_N	FMC_ADC_BUSY
D25	GND	GND
D26	LA26_P	FMC_ADC_GAIN_DO
D27	LA26_N	FMC_ADC_GAIN_D1
D28	GND	GND
D29	тск	N/C
D 30	TDI	N/C
D31	TDO	N/C
D32	3P3 VAUX	3P3V_AUX
D33	TMS	N/C
D34	TRST_L	N/C
D35	GA1	FMC_G1
D 36	3P3V	3 P3V
D37	GND	GND
D38	3P3V	3 P3V
D 39	GND	GND
D40	3P3V	3 P3V

E1	GND	GND	Fl	PG_M2C	PG_M2C
E2	HAD1_P_CC	N/C	F2	GND	GND
E3	HAD1_N_CC	N/C	F3	GND	GND
E4	GND	GND	F4	HADO_P_CC	N/C
E5	GND	GND	F5	HADO_N_CC	N/C
E6	HAD5_P	N/C	F6	GND	GND
E7	HAD5_N	N/C	F7	HAD4_P	N/C
E8	GND	GND	F8	HAD4_N	N/C
E9	HAD9_P	N/C	F9	GND	GND
E10	HAD9_N	N/C	F10	HAD8_P	N/C
E11	GND	GND	F11	HAD8_N	N/C
E12	HA13_P	N/C	F12	GND	GND
E13	HA13_N	N/C	F13	HA12_P	N/C
E14	GND	GND	F14	HA12_N	N/C
E15	HA16_P	N/C	F15	GND	GND
E16	HA16_N	N/C	F16	HA15_P	N/C
E17	GND	GND	F17	HA15_N	N/C
E18	HAZO_P	N/C	F18	GND	GND
E19	HAZO_N	N/C	F19	HA19_P	N/C
E20	GND	GND	F20	HA19_N	N/C
E21	HB03_P	N/C	F21	GND	GND
E22	HB03_N	N/C	F22	HB02_P	N/C
E23	GND	GND	F23	HB02_N	N/C
E24	HB05_P	N/C	F24	GND	GND
E25	HB05_N	N/C	F25	HB04_P	N/C
E26	GND	GND	F26	HB04_N	N/C
E27	HB09_P	N/C	F27	GND	GND
E28	HB09_N	N/C	F28	HBO8_P	N/C
E29	GND	GND	F29	HB08_N	N/C
E30	HB13_P	N/C	F30	GND	GND
E31	HB13_N	N/C	F31	HB12_P	N/C
E32	GND	GND	F32	HB12_N	N/C
E33	HB19_P	N/C	F33	GND	GND
E34	HB19_N	N/C	F34	HB16_P	N/C
E35	GND	GND	F35	HB16_N	N/C
E36	HB21_P	N/C	F36	GND	GND
E37	HB21_N	N/C	F37	HB20_P	N/C
E38	GND	GND	F38	HB20_N	N/C
E39	LOAN	VADJ	F39	GND	GND
E40	GND	GND	F40	VADJ	VADJ

61	GND	GND	H1
G2	CLK1_M2C_P	CLK1_M2C_P	HZ
G3	CLK1_MZC_N	CIKI_M2C_N	HB
64	GND	GND	H4
G5	GND	GND	HS
G6	LADO_P_CC	DAC_D0	H6
67	LADO_N_CC	DAC_D1	H7
68	GND	GND	HB
69	LAD3_P	DAC_D2	H9
G10	LA03_N	DAC_D3	H10
611	GND	GND	H11
G12	LA08_P	DAC_D4	H12
613	LA08_N	DAC_D5	H13
614	GND	GND	H14
615	LA12_P	DAC_D6	H15
G16	LA12_N	DAC_D7	H16
G17	GND	GND	H17
G18	LA16_P	DAC_AD	H18
619	LA16_N	DAC_A1	H19
G20	GND	GND	H20
621	LAZO_P	FIMC_DAC_LDAC	HZ1
622	LAZO_N	DAC_RST_N	HZZ
G23	GND	GND	HZ3
G24	LAZZ_P	DAC_WR0	H24
G25	LAZZ_N	DAC_WR1	H25
G26	GND	GND	H26
G27	LAZ5_P	DAC_WR2	H27
G28	LA25_N	DAC_WR3	H28
629	GND	GND	H29
G30	LA29_P	FMC_PLL_SDIO	H30
G31	LAZ9_N	FMC_PLL2_CS_N	H31
G32	GND	GND	H32
G33	LA31_P	FMC_PLL_STATUS1	H33
G34	LA31_N	FMC_PLL_SYNC1	H34
G35	GND	GND	H35
G36	LA33_P	N/C	H36
G37	LA33_N	FMC_PLL_SYNC2	H37
638	GND	GND	H38
639	VADJ	VADJ	H39
640	GND	GND	H40

H1	VREF_A_M2C	N/C
HZ	PRSNT_M2C_L	GND
нз	GND	GND
H4	CLKO_MZC_P	CLKD_MZC_P
H5	CTKD_WSC_N	CTKD_IVISC_N
H6	GND	GND
H7	LADZ_P	DAC_D8
HB	LADZ_N	DAC_D9
H9	GND	GND
H10	L404_P	DAC_D10
н11	L404_N	DAC_D11
H12	GND	GND
H13	L407_P	DAC_D12
H14	L407_N	DAC_D13
H15	GND	GND
H16	LA11_P	DAC_D14
H17	LA11_N	DAC_D15
H18	GND	GND
H19	LA15_P	ADC_GAIN_CHO
H20	LA15_N	ADC_GAIN_CH1
HZ1	GND	GND
HZZ	LA19_P	ADC_GAIN_CHZ
HZ3	LA19_N	ADC_GAIN_WR
H24	GND	GND
H25	LA21_P	ADC_SLEEP
H26	LA21_N	DAC_CLK_SEL
H27	GND	GND
H28	LAZ4_P	FMC_PUL1_CS_N
H29	LA24_N	FMC_PLL_SCLK
H30	GND	GND
H31	LAZ8_P	FMC_TRIGOUT_P
H32	LAZ8_N	FMC_TRIGOUT_N
H33	GND	GND
H34	LA30_P	
H35	LA30_N	EXT_CLK_SEL
H36	GND	GND
H37	LA32_P	N/C
H38	LA32_N	FMC_TEMP_ALERT
H39	GND	GND
H4D	VADJ	VADJ

11	GND	GND	Кl
JZ	CLK3_BIDIR_P	CLK3_BIDIR_P	KZ
13	CLK3_BIDIR_N	CLK3_BIDIR_N	КЗ
J 4	GND	GND	К4
15	GND	GND	К5
16	HAO3_P	N/C	К6
17	HAD3_N	N∕C	К7
81	GND	GND	KB
19	H407_P	N/C	К9
110	H407_N	N/C	к10
111	GND	GND	К11
J 12	HA11_P	N/C	K12
J13	HA11_N	N∕C	К13
114	GND	GND	к14
J15	HA14_P	N/C	K15
J16	HA14_N	N∕C	K16
117	GND	GND	К17
J 18	HA18_P	N/C	K18
119	HA18_N	N∕C	К19
J20	GND	GND	K20
J21	HAZZ_P	N/C	K21
J 22	HAZZ_N	N/C	K22
J 23	GND	GND	K23
J Z 4	HB01_P	N/C	KZ4
J25	HB01_N	N∕C	K25
J 26	GND	GND	K26
J 27	HB07_P	N/C	K27
J 28	HB07_N	N∕C	K28
J 29	GND	GND	K29
130	HB11_P	N∕C	K30
J31	HB11_N	N∕C	K31
J 32	GND	GND	K32
133	HB15_P	N/C	K33
134	HB15_N	N/C	К34
135	GND	GND	K35
J36	HB18_P	N/C	K36
J37	HB18_N	N/C	K37
138	GND	GND	K38
139	M O_B_M2C	N/C	K39
140	GND	GND	K40

кі	VREF_B_M2C	N/C
KZ	GND	GND
кз	GND	GND
К4	CLKZ_BIDIR_P	CLK2_BIDIR_P
K5	CLK2_BIDIR_N	CLK2_BIDIR_N
К6	GND	GND
K7	HADZ_P	N∕C
К8	HAD2_N	N∕C
К9	GND	GND
к10	H406_P	N/C
к11	HAD6_N	N/C
K12	GND	GND
K13	HA10_P	N∕C
К14	HA10_N	N/C
K15	GND	GND
K16	HA17_P_CC	N/C
К17	HA17_N_CC	N∕C
K18	GND	GND
K19	HAZ1_P	N∕C
K20	HAZ1_N	N/C
K21	GND	GND
KZZ	HAZ3_P	N∕C
K23	HAZ3_N	N∕C
KZ4	GND	GND
K25	HB00_P_CC	N/C
K26	HB00_N_CC	N/C
K27	GND	GND
K28	HB06_P_CC	N/C
K29	HB06_N_CC	N/C
K30	GND	GND
K31	НВ10_Р	N/C
K32	HB10_N	N∕C
K33	GND	GND
K34	НВ14_Р	N/C
K35	HB14_N	N/C
K36	GND	GND
K37	HB17_P_CC	N/C
K38	HB17_N_CC	N/C
K39	GND	GND
K40	MO_B_M2C	VADJ
	-	

IMPORTANT NOTICES

Interconnect Systems International, LLC (ISI) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to ISI's terms and conditions of sale supplied at the time of order acknowledgment.

ISI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with ISI's standard warranty. Testing and other quality control techniques are used to the extent ISI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

ISI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using ISI products. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

ISI does not warrant or represent that any license, either express or implied, is granted under any ISI patent right, copyright, mask work right, or other ISI intellectual property right relating to any combination, machine, or process in which ISI products or services are used. Information published by ISI regarding third-party products or services does not constitute a license from ISI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from ISI under the patents or other intellectual property of ISI.

Reproduction of information in ISI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice.

ISI is not responsible or liable for such altered documentation. Resale of ISI products or services with statements different from or beyond the parameters stated by ISI for that product or service voids all express and any implied warranties for the associated ISI product or service and is an unfair and deceptive business practice. ISI is not responsible or liable for any such statements.

For further information on ISI products and support see our web site:

www.isipkg.com

Mailing Address: Interconnect Systems International, LLC.

741 Flynn Road, Camarillo, CA 93012

Copyright © 2019 ISI LLC, a Molex company